gpt4 book ai didi

python - 具有离散 Action 空间的软 Actor 评论家

转载 作者:行者123 更新时间:2023-11-30 09:26:42 27 4
gpt4 key购买 nike

我正在尝试为离散 Action 空间实现软 Actor 评论家算法,但我在损失函数方面遇到了麻烦。

以下是来自 SAC 的连续行动空间链接: https://spinningup.openai.com/en/latest/algorithms/sac.html

我不知道我做错了什么。

问题是网络在 cartpole 环境中无法学习任何内容。

github上的完整代码:https://github.com/tk2232/sac_discrete/blob/master/sac_discrete.py

这是我的想法如何计算离散 Action 的损失。

值(value)网络

class ValueNet:
def __init__(self, sess, state_size, hidden_dim, name):
self.sess = sess

with tf.variable_scope(name):
self.states = tf.placeholder(dtype=tf.float32, shape=[None, state_size], name='value_states')
self.targets = tf.placeholder(dtype=tf.float32, shape=[None, 1], name='value_targets')
x = Dense(units=hidden_dim, activation='relu')(self.states)
x = Dense(units=hidden_dim, activation='relu')(x)
self.values = Dense(units=1, activation=None)(x)

optimizer = tf.train.AdamOptimizer(0.001)

loss = 0.5 * tf.reduce_mean((self.values - tf.stop_gradient(self.targets)) ** 2)
self.train_op = optimizer.minimize(loss, var_list=_params(name))

def get_value(self, s):
return self.sess.run(self.values, feed_dict={self.states: s})

def update(self, s, targets):
self.sess.run(self.train_op, feed_dict={self.states: s, self.targets: targets})

在 Q_Network 中,我通过收集的操作收集值

示例

q_out = [[0.5533, 0.4444], [0.2222, 0.6666]]
collected_actions = [0, 1]
gather = [[0.5533], [0.6666]]

收集功能

def gather_tensor(params, idx):
idx = tf.stack([tf.range(tf.shape(idx)[0]), idx[:, 0]], axis=-1)
params = tf.gather_nd(params, idx)
return params

Q网络

class SoftQNetwork:
def __init__(self, sess, state_size, action_size, hidden_dim, name):
self.sess = sess

with tf.variable_scope(name):
self.states = tf.placeholder(dtype=tf.float32, shape=[None, state_size], name='q_states')
self.targets = tf.placeholder(dtype=tf.float32, shape=[None, 1], name='q_targets')
self.actions = tf.placeholder(dtype=tf.int32, shape=[None, 1], name='q_actions')

x = Dense(units=hidden_dim, activation='relu')(self.states)
x = Dense(units=hidden_dim, activation='relu')(x)
x = Dense(units=action_size, activation=None)(x)
self.q = tf.reshape(gather_tensor(x, self.actions), shape=(-1, 1))

optimizer = tf.train.AdamOptimizer(0.001)

loss = 0.5 * tf.reduce_mean((self.q - tf.stop_gradient(self.targets)) ** 2)
self.train_op = optimizer.minimize(loss, var_list=_params(name))

def update(self, s, a, target):
self.sess.run(self.train_op, feed_dict={self.states: s, self.actions: a, self.targets: target})

def get_q(self, s, a):
return self.sess.run(self.q, feed_dict={self.states: s, self.actions: a})

政策网

class PolicyNet:
def __init__(self, sess, state_size, action_size, hidden_dim):
self.sess = sess

with tf.variable_scope('policy_net'):
self.states = tf.placeholder(dtype=tf.float32, shape=[None, state_size], name='policy_states')
self.targets = tf.placeholder(dtype=tf.float32, shape=[None, 1], name='policy_targets')
self.actions = tf.placeholder(dtype=tf.int32, shape=[None, 1], name='policy_actions')

x = Dense(units=hidden_dim, activation='relu')(self.states)
x = Dense(units=hidden_dim, activation='relu')(x)
self.logits = Dense(units=action_size, activation=None)(x)
dist = Categorical(logits=self.logits)

optimizer = tf.train.AdamOptimizer(0.001)

# Get action
self.new_action = dist.sample()
self.new_log_prob = dist.log_prob(self.new_action)

# Calc loss
log_prob = dist.log_prob(tf.squeeze(self.actions))
loss = tf.reduce_mean(tf.squeeze(self.targets) - 0.2 * log_prob)
self.train_op = optimizer.minimize(loss, var_list=_params('policy_net'))

def get_action(self, s):
action = self.sess.run(self.new_action, feed_dict={self.states: s[np.newaxis, :]})
return action[0]

def get_next_action(self, s):
next_action, next_log_prob = self.sess.run([self.new_action, self.new_log_prob], feed_dict={self.states: s})
return next_action.reshape((-1, 1)), next_log_prob.reshape((-1, 1))

def update(self, s, a, target):
self.sess.run(self.train_op, feed_dict={self.states: s, self.actions: a, self.targets: target})

更新功能

def soft_q_update(batch_size, frame_idx):
gamma = 0.99
alpha = 0.2

state, action, reward, next_state, done = replay_buffer.sample(batch_size)
action = action.reshape((-1, 1))
reward = reward.reshape((-1, 1))
done = done.reshape((-1, 1))

Q_target

v_ = value_net_target.get_value(next_state)
q_target = reward + (1 - done) * gamma * v_

V_目标

next_action, next_log_prob = policy_net.get_next_action(state)
q1 = soft_q_net_1.get_q(state, next_action)
q2 = soft_q_net_2.get_q(state, next_action)
q = np.minimum(q1, q2)
v_target = q - alpha * next_log_prob

Policy_target

q1 = soft_q_net_1.get_q(state, action)
q2 = soft_q_net_2.get_q(state, action)
policy_target = np.minimum(q1, q2)

最佳答案

由于该算法对于离散和连续策略都是通用的,因此关键思想是我们需要一个可重新参数化的离散分布。然后,扩展应该涉及对连续 SAC 的最少代码修改——只需更改策略分发类。

有一种这样的分布——GumbelSoftmax 分布。 PyTorch 没有这个内置功能,所以我只是从具有正确 rsample() 的近亲扩展它,并添加正确的对数概率计算方法。由于能够计算重新参数化的操作及其对数概率,SAC 能够以最少的额外代码完美地处理离散操作,如下所示。

    def calc_log_prob_action(self, action_pd, reparam=False):
'''Calculate log_probs and actions with option to reparametrize from paper eq. 11'''
samples = action_pd.rsample() if reparam else action_pd.sample()
if self.body.is_discrete: # this is straightforward using GumbelSoftmax
actions = samples
log_probs = action_pd.log_prob(actions)
else:
mus = samples
actions = self.scale_action(torch.tanh(mus))
# paper Appendix C. Enforcing Action Bounds for continuous actions
log_probs = (action_pd.log_prob(mus) - torch.log(1 - actions.pow(2) + 1e-6).sum(1))
return log_probs, actions


# ... for discrete action, GumbelSoftmax distribution

class GumbelSoftmax(distributions.RelaxedOneHotCategorical):
'''
A differentiable Categorical distribution using reparametrization trick with Gumbel-Softmax
Explanation http://amid.fish/assets/gumbel.html
NOTE: use this in place PyTorch's RelaxedOneHotCategorical distribution since its log_prob is not working right (returns positive values)
Papers:
[1] The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables (Maddison et al, 2017)
[2] Categorical Reparametrization with Gumbel-Softmax (Jang et al, 2017)
'''

def sample(self, sample_shape=torch.Size()):
'''Gumbel-softmax sampling. Note rsample is inherited from RelaxedOneHotCategorical'''
u = torch.empty(self.logits.size(), device=self.logits.device, dtype=self.logits.dtype).uniform_(0, 1)
noisy_logits = self.logits - torch.log(-torch.log(u))
return torch.argmax(noisy_logits, dim=-1)

def log_prob(self, value):
'''value is one-hot or relaxed'''
if value.shape != self.logits.shape:
value = F.one_hot(value.long(), self.logits.shape[-1]).float()
assert value.shape == self.logits.shape
return - torch.sum(- value * F.log_softmax(self.logits, -1), -1)

这是 LunarLander 结果。 SAC 很快就能学会解决这个问题。

LunarLander result

完整的实现代码在 SLM Labhttps://github.com/kengz/SLM-Lab/blob/master/slm_lab/agent/algorithm/sac.py

Roboschool(连续)和 LunarLander(离散)的 SAC 基准测试结果如下所示:https://github.com/kengz/SLM-Lab/pull/399

关于python - 具有离散 Action 空间的软 Actor 评论家,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56226133/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com