- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我的代码正在使用 sklearn kMeans 算法。当我执行代码时,我收到类似“'KMeans'对象没有属性'labels_'”的错误
Traceback (most recent call last):
File ".\kmeans.py", line 56, in <module>
np.unique(km.labels_, return_counts=True)
AttributeError: 'KMeans' object has no attribute 'labels_'
这是我的代码:
import pandas as pds
import nltk,re,string
from nltk.probability import FreqDist
from collections import defaultdict
from nltk.tokenize import sent_tokenize, word_tokenize, RegexpTokenizer
from nltk.tokenize.punkt import PunktSentenceTokenizer
from nltk.corpus import stopwords
from string import punctuation
from heapq import nlargest
# import and instantiate CountVectorizer
from sklearn.feature_extraction.text import CountVectorizer
vect = CountVectorizer()
from sklearn.feature_extraction.text import TfidfVectorizer
vectorizer = TfidfVectorizer(ngram_range=(1,2),max_df=0.5, min_df=2,stop_words='english')
train_X = vectorizer.fit_transform(x)
from sklearn.cluster import KMeans
import sklearn.cluster.k_means_
km = KMeans(n_clusters=3, init='k-means++', max_iter=100, n_init=1,
verbose=True)
import numpy as np
np.unique(km.labels_, return_counts=True)
text = {}
for i,cluster in enumerate(km.labels_):
oneDocument = X[i]
if cluster not in text.keys():
text[cluster] = oneDocument
else:
text[cluster] += oneDocument
_stopwords = set(stopwords.words('english')+ list(punctuation))
keywords = {}
counts = {}
for cluster in range(3):
word_sent = word_tokenize(text[cluster].lower())
word_sent = [word for word in word_sent if word not in _stopwords]
freq = FreqDist(word_sent)
keywords[cluster] = nlargest(100, freq, key=freq.get)
counts[cluster] = freq
unique_keys={}
for cluster in range(3):
other_clusters = list(set(range(3))-set([cluster]))
keys_other_clusters =
set(keywords[other_clusters[0]]).union(set(keywords[other_clusters[1]]))
unique=set(keywords[cluster])-keys_other_clusters
unique_keys[cluster]= nlargest(100, unique, key=counts[cluster].get)
#print(unique_keys)
print(keywords)
获取关键词簇。我已经尝试解决这个问题..但我不知道我缺少哪里..
最佳答案
您必须首先适合您的 KMeans
对象,使其具有标签属性:
如果不安装它会抛出错误:
from sklearn.cluster import KMeans
km = KMeans()
print(km.labels_)
>>>AttributeError: 'KMeans' object has no attribute 'labels_'
安装后:
from sklearn.cluster import KMeans
import numpy as np
km = KMeans()
X = np.random.rand(100, 2)
km.fit(X)
print(km.labels_)
>>>[1 6 7 4 6 6 7 5 6 0 0 7 3 4 5 7 5 0 3 4 0 6 1 6 7 5 4 3 4 2 1 2 1 4 6 3 6 1 7 6 6 7 4 1 1 0 4 2 5 0 6 3 1 0 7 6 2 7 7 5 2 7 7 3 2 1 2 2 4 7 5 3 2 65 1 6 2 4 2 3 2 2 2 1 2 0 5 7 2 4 4 5 4 4 1 1 4 5 0]
关于python - “KMeans”对象没有属性 'labels_',我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/49844928/
你好,stackoverflow 社区, 我在运行 kmeans (统计数据包)和 Kmeans (amap 包)在 Iris 数据集上。在这两种情况下,我使用相同的算法(Lloyd–Forgy)、相
我想将KMeans应用于具有Alpha蒙版的图像。它应该只对可见的颜色起作用。我希望能写成一行。起始图:。。天真地使用KMeans(哎呀,都是一种颜色):。。做实验。浏览所有Alpha选项。-Alph
我想将KMeans应用于具有Alpha蒙版的图像。它应该只对可见的颜色起作用。我希望能写成一行。起始图:。。天真地使用KMeans(哎呀,都是一种颜色):。。做实验。浏览所有Alpha选项。-Alph
在对一些具有 3 个簇的向量进行 K 均值拟合时,我能够获取输入数据的标签。KMeans.cluster_centers_ 返回中心的坐标,所以不应该有一些与之对应的向量吗?如何找到这些簇的质心处的值
我正在使用视频中的 kmeans 聚类技术,但我不明白为什么我们在 kmeans 聚类中使用 .fit 方法? kmeans = KMeans(n_clusters=5, random_state=0
MATLAB K-means 给出图像的准确结果,而使用 OpenCV c++ 的 k-means 不给出相同的结果,即使参数相同。实现上有什么不同吗? 最佳答案 Matlab 的 kmeans fu
我正在使用 scikit learn 的 Kmeans 算法对评论进行聚类。 sentence_list=['hello how are you', "I am doing great", "my n
来自 sklearn KMeans 的文档 class sklearn.cluster.KMeans(n_clusters=8, init='k-means++', n_init=10, max_it
我尝试使用 scikit-learn 实现并行运行 KMeans,但我不断收到以下错误消息: Traceback (most recent call last): File "run_kmeans
前言 K-means是一种经典的无监督学习算法,用于对数据进行聚类。K-means算法将数据集视为具有n个特征的n维空间,并尝试通过最小化簇内平方误差的总和来将数据点划分为簇。本文将介绍K-m
所以按照文档中的示例 (here): The KElbowVisualizer implements the “elbow” method to help data scientists select
我试图将数据点(通过欧几里得距离)分配给一组已知的、预定义的中心点,将点分配给最近的固定中心点。 我有一种感觉,我可能过于复杂/遗漏了一些基本的东西,但我已经尝试使用具有预定中心且没有迭代的 kmea
我想知道其他人在用 K-means 集群排序做什么。我正在制作热图(主要是 ChIP-Seq 数据)并使用自定义热图函数(基于 R 的内置热图函数)获得漂亮的数字。但是,我想要两个改进。第一个是根据递
我正在尝试用 Java 实现 KMeans,但遇到了一个导致所有结果都丢失的情况。当给定一些随机选择的初始化质心,数据进入其中一个质心实际上并未定义簇的状态时,就会发生这种情况。例如,如果 K=3,则
示例: load kmeansdata %provides X variable Y=bsxfun(@minus,X,mean(X,2))'/sqrt(size(X,2)-1); %normalize
我正在大数据集上运行 k-means。我是这样设置的: from sklearn.cluster import KMeans km = KMeans(n_clusters=500, max_iter
我有一组包含 50 个特征(c1、c2、c3 ...)的数据,超过 80k 行。 每行包含标准化数值(范围 0-1)。它实际上是一个标准化的虚拟变量,其中一些行只有很少的特征,3-4(即如果没有值则分
我想对我的数据集的特定列执行 K 均值。由于这些是分类数据,我计划对其进行 onehot_encoding。现在我想知道是否可以对特定列进行 K-means 并显示所有列的结果(例如一组)? 例如,我
使用 K 均值聚类生成 K 个簇,我们如何计算每个簇的面积?有公式吗? 我已经尝试过 gArea() 与 rgeos 包,但我收到错误代码“ unable to find an inherited m
我知道下定义的 KMeans 算法需要特征缩放sklearn.cluster.KMeans 我的问题是,在使用 KMeans 之前是否需要手动完成,或者 KMeans 是否会自动执行特征缩放?如果是自
我是一名优秀的程序员,十分优秀!