- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我在脚本中使用了多个Gpu的DataParallel。torch.nn.DataParallel仅使用id为0的gpu,而不使用id为1的gpu。因此利用率非常低。以下是完整代码:
from __future__ import print_function
from miscc.utils import mkdir_p
from miscc.utils import build_super_images
from miscc.losses import sent_loss, words_loss
from miscc.config import cfg, cfg_from_file
from datasets import TextDataset
from datasets import prepare_data
from model import RNN_ENCODER, CNN_ENCODER
import os
import sys
import time
import random
import pprint
import datetime
import dateutil.tz
import argparse
import numpy as np
from PIL import Image
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
import torch.backends.cudnn as cudnn
import torchvision.transforms as transforms
dir_path = (os.path.abspath(os.path.join(os.path.realpath(__file__), './.')))
sys.path.append(dir_path)
UPDATE_INTERVAL = 200
def parse_args():
parser = argparse.ArgumentParser(description='Train a DAMSM network')
parser.add_argument('--cfg', dest='cfg_file',
help='optional config file',
default='cfg/bird.yml', type=str)
parser.add_argument('--gpu', dest='gpu_id', type=int, default=0)
parser.add_argument('--data_dir', dest='data_dir', type=str, default='')
parser.add_argument('--manualSeed', type=int, help='manual seed')
args = parser.parse_args()
return args
def train(dataloader, cnn_model, rnn_model, batch_size, labels, optimizer, epoch, ixtoword, image_dir):
torch.nn.DataParallel(cnn_model.train(),device_ids=[0,1],dim=1).cuda()
torch.nn.DataParallel(rnn_model.train(),device_ids=[0,1],dim=1).cuda()
s_total_loss0 = 0
s_total_loss1 = 0
w_total_loss0 = 0
w_total_loss1 = 0
count = (epoch + 1) * len(dataloader)
start_time = time.time()
for step, data in enumerate(dataloader, 0):
# print('step', step)
rnn_model.zero_grad()
cnn_model.zero_grad()
imgs, captions, cap_lens, \
class_ids, keys = prepare_data(data)
# words_features: batch_size x nef x 17 x 17
# sent_code: batch_size x nef
words_features, sent_code = cnn_model(imgs[-1])
# --> batch_size x nef x 17*17
nef, att_sze = words_features.size(1), words_features.size(2)
# words_features = words_features.view(batch_size, nef, -1)
hidden = rnn_model.init_hidden(batch_size)
# words_emb: batch_size x nef x seq_len
# sent_emb: batch_size x nef
words_emb, sent_emb = rnn_model(captions, cap_lens, hidden)
w_loss0, w_loss1, attn_maps = words_loss(words_features, words_emb, labels,
cap_lens, class_ids, batch_size)
w_total_loss0 += w_loss0.data
w_total_loss1 += w_loss1.data
loss = w_loss0 + w_loss1
s_loss0, s_loss1 = \
sent_loss(sent_code, sent_emb, labels, class_ids, batch_size)
loss += s_loss0 + s_loss1
s_total_loss0 += s_loss0.data
s_total_loss1 += s_loss1.data
#
loss.backward()
#
# `clip_grad_norm` helps prevent
# the exploding gradient problem in RNNs / LSTMs.
torch.nn.utils.clip_grad_norm(rnn_model.parameters(),
cfg.TRAIN.RNN_GRAD_CLIP)
optimizer.step()
if step % UPDATE_INTERVAL == 0:
count = epoch * len(dataloader) + step
s_cur_loss0 = s_total_loss0[0] / UPDATE_INTERVAL
s_cur_loss1 = s_total_loss1[0] / UPDATE_INTERVAL
w_cur_loss0 = w_total_loss0[0] / UPDATE_INTERVAL
w_cur_loss1 = w_total_loss1[0] / UPDATE_INTERVAL
elapsed = time.time() - start_time
print('| epoch {:3d} | {:5d}/{:5d} batches | ms/batch {:5.2f} | '
's_loss {:5.2f} {:5.2f} | '
'w_loss {:5.2f} {:5.2f}'
.format(epoch, step, len(dataloader),
elapsed * 1000. / UPDATE_INTERVAL,
s_cur_loss0, s_cur_loss1,
w_cur_loss0, w_cur_loss1))
s_total_loss0 = 0
s_total_loss1 = 0
w_total_loss0 = 0
w_total_loss1 = 0
start_time = time.time()
# attention Maps
img_set, _ = \
build_super_images(imgs[-1].cpu(), captions,
ixtoword, attn_maps, att_sze)
if img_set is not None:
im = Image.fromarray(img_set)
fullpath = '%s/attention_maps%d.png' % (image_dir, step)
im.save(fullpath)
return count
def evaluate(dataloader, cnn_model, rnn_model, batch_size):
cnn_model.eval().cuda()
rnn_model.eval().cuda()
s_total_loss = 0
w_total_loss = 0
for step, data in enumerate(dataloader, 0):
real_imgs, captions, cap_lens, \
class_ids, keys = prepare_data(data)
words_features, sent_code = cnn_model(real_imgs[-1])
# nef = words_features.size(1)
# words_features = words_features.view(batch_size, nef, -1)
hidden = rnn_model.init_hidden(batch_size)
words_emb, sent_emb = rnn_model(captions, cap_lens, hidden)
w_loss0, w_loss1, attn = words_loss(words_features, words_emb, labels,
cap_lens, class_ids, batch_size)
w_total_loss += (w_loss0 + w_loss1).data
s_loss0, s_loss1 = \
sent_loss(sent_code, sent_emb, labels, class_ids, batch_size)
s_total_loss += (s_loss0 + s_loss1).data
if step == 50:
break
s_cur_loss = s_total_loss[0] / step
w_cur_loss = w_total_loss[0] / step
return s_cur_loss, w_cur_loss
def build_models():
# build model ############################################################
text_encoder = RNN_ENCODER(dataset.n_words, nhidden=cfg.TEXT.EMBEDDING_DIM)
image_encoder = CNN_ENCODER(cfg.TEXT.EMBEDDING_DIM)
labels = Variable(torch.LongTensor(range(batch_size)))
start_epoch = 0
if cfg.TRAIN.NET_E != '':
state_dict = torch.load(cfg.TRAIN.NET_E)
text_encoder.load_state_dict(state_dict)
print('Load ', cfg.TRAIN.NET_E)
#
name = cfg.TRAIN.NET_E.replace('text_encoder', 'image_encoder')
state_dict = torch.load(name)
image_encoder.load_state_dict(state_dict)
print('Load ', name)
istart = cfg.TRAIN.NET_E.rfind('_') + 8
iend = cfg.TRAIN.NET_E.rfind('.')
start_epoch = cfg.TRAIN.NET_E[istart:iend]
start_epoch = int(start_epoch) + 1
print('start_epoch', start_epoch)
if cfg.CUDA:
text_encoder = text_encoder.cuda()#torch.nn.DataParallel(text_encoder,device_ids=[0,1],dim=1)
image_encoder = image_encoder.cuda()#torch.nn.DataParallel(image_encoder,device_ids=[0,1],dim=1)
labels = labels.cuda()#torch.nn.DataParallel(labels,device_ids=[0,1],dim=1)
return text_encoder, image_encoder, labels, start_epoch
if __name__ == "__main__":
args = parse_args()
if args.cfg_file is not None:
cfg_from_file(args.cfg_file)
if args.gpu_id == -1:
cfg.CUDA = False
else:
cfg.GPU_ID =args.gpu_id
if args.data_dir != '':
cfg.DATA_DIR = args.data_dir
print('Using config:')
pprint.pprint(cfg)
if not cfg.TRAIN.FLAG:
args.manualSeed = 100
elif args.manualSeed is None:
args.manualSeed = random.randint(1, 10000)
random.seed(args.manualSeed)
np.random.seed(args.manualSeed)
torch.manual_seed(args.manualSeed)
if cfg.CUDA:
torch.cuda.manual_seed_all(args.manualSeed)
##########################################################################
now = datetime.datetime.now(dateutil.tz.tzlocal())
timestamp = now.strftime('%Y_%m_%d_%H_%M_%S')
output_dir = '../output/%s_%s_%s' % \
(cfg.DATASET_NAME, cfg.CONFIG_NAME, timestamp)
model_dir = os.path.join(output_dir, 'Model')
image_dir = os.path.join(output_dir, 'Image')
mkdir_p(model_dir)
mkdir_p(image_dir)
#torch.cuda.set_device()
cudnn.benchmark = True
# Get data loader ##################################################
imsize = cfg.TREE.BASE_SIZE * (2 ** (cfg.TREE.BRANCH_NUM-1))
batch_size = cfg.TRAIN.BATCH_SIZE
image_transform = transforms.Compose([
transforms.Scale(int(imsize * 76 / 64)),
transforms.RandomCrop(imsize),
transforms.RandomHorizontalFlip()])
dataset = TextDataset(cfg.DATA_DIR, 'train',
base_size=cfg.TREE.BASE_SIZE,
transform=image_transform)
print(dataset.n_words, dataset.embeddings_num)
assert dataset
dataloader = torch.utils.data.DataLoader(
dataset, batch_size=batch_size, drop_last=True,
shuffle=True, num_workers=int(cfg.WORKERS))
# # validation data #
dataset_val = TextDataset(cfg.DATA_DIR, 'test',
base_size=cfg.TREE.BASE_SIZE,
transform=image_transform)
dataloader_val = torch.utils.data.DataLoader(
dataset_val, batch_size=batch_size, drop_last=True,
shuffle=True, num_workers=int(cfg.WORKERS))
# Train ##############################################################
text_encoder, image_encoder, labels, start_epoch = build_models()
para = list(text_encoder.parameters())
for v in image_encoder.parameters():
if v.requires_grad:
para.append(v)
# optimizer = optim.Adam(para, lr=cfg.TRAIN.ENCODER_LR, betas=(0.5, 0.999))
# At any point you can hit Ctrl + C to break out of training early.
try:
lr = cfg.TRAIN.ENCODER_LR
for epoch in range(start_epoch, cfg.TRAIN.MAX_EPOCH):
optimizer = optim.Adam(para, lr=lr, betas=(0.5, 0.999))
epoch_start_time = time.time()
count = torch.nn.DataParallel(train(dataloader, image_encoder, text_encoder,
batch_size, labels, optimizer, epoch,
dataset.ixtoword, image_dir),device_ids=[0,1],dim=1).cuda()
print('-' * 89)
if len(dataloader_val) > 0:
s_loss, w_loss = torch.nn.DataParallel(evaluate(dataloader_val, image_encoder,
text_encoder, batch_size)).cuda()
print('| end epoch {:3d} | valid loss '
'{:5.2f} {:5.2f} | lr {:.5f}|'
.format(epoch, s_loss, w_loss, lr))
print('-' * 89)
if lr > cfg.TRAIN.ENCODER_LR/10.:
lr *= 0.98
if (epoch % cfg.TRAIN.SNAPSHOT_INTERVAL == 0 or
epoch == cfg.TRAIN.MAX_EPOCH):
torch.save(image_encoder.state_dict(),
'%s/image_encoder%d.pth' % (model_dir, epoch))
torch.save(text_encoder.state_dict(),
'%s/text_encoder%d.pth' % (model_dir, epoch))
print('Save G/Ds models.')
except KeyboardInterrupt:
print('-' * 89)
print('Exiting from training early')
我读过有关 DataParallel 的各种文章,根据他们的说法,这应该有效。有人可以帮助我找到问题的解决方案吗?
最佳答案
您只能在创建 RNN_ENCODER
和 CNN_ENCODER
类的实例后立即使用 torch.nn.DataParallel
。您的错误如下:
每次调用train
方法时,都会调用RNN_ENCODER
实例(即train
中的rnn_model
)方法)和 CNN_ENCODER
实例(即 train
方法中的 cnn_model
)由 torch.nn.DataParallel
包装>。这是错误的。您只需执行一次,即在 build_models
方法中实例化它们之后。这可确保您的模型在多个 GPU 上复制以并行执行。在每个时期一次又一次地包装实例(当调用train
时)不会帮助pytorch并行化计算。
train
方法的输出是count
,它是一个整型变量。通过将 train
方法的输出包装在 torch.nn.DataParallel
中,您将无法实现数据并行性。
我建议你访问Pytorch的官方文档:link更好地了解如何使用Dataparallel
。
关于machine-learning - torch.nn.DataParallel 在 pytorch 中不起作用,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/50917503/
我有一个简单的神经网络模型,我应用 cuda()或 DataParallel()在模型上,如下所示。 model = torch.nn.DataParallel(model).cuda() 或者, m
我想做的是在我的自定义 RNN 类中使用 DataParallel。 好像我以错误的方式初始化了 hidden_0 ...... class RNN(nn.Module): def __i
看起来像使用 torch.nn.DataParallel改变输出大小。 虽然在官方文档 https://pytorch.org/docs/stable/nn.html#torch.nn.DataPar
我有一个按以下方式定义的 torch.nn.module 类: class MyModule(torch.nn.Module): def __init__(self): supe
如果我的模型仅包含 nn.Module 层,例如 nn.Linear,则 nn.DataParallel 可以正常工作。 x = torch.randn(100,10) class normal_mo
我正在尝试更改一些 PyTorch 代码,以便它可以在 CPU 上运行。 模型是用 torch.nn.DataParallel() 训练的,所以当我加载预训练模型并尝试使用它时,我必须使用 nn.Da
这是一个用于运行基于字符的语言生成的 RNN 模型: class RNN(nn.Module): def __init__(self, input_size, hidden_size, out
我在脚本中使用了多个Gpu的DataParallel。torch.nn.DataParallel仅使用id为0的gpu,而不使用id为1的gpu。因此利用率非常低。以下是完整代码: from __fu
我是一名优秀的程序员,十分优秀!