gpt4 book ai didi

python - 梯度下降 ANN - MATLAB 正在做什么而我没有做什么?

转载 作者:行者123 更新时间:2023-11-30 09:21:46 25 4
gpt4 key购买 nike

我正在尝试使用梯度下降反向传播在 Python 中重新创建一个简单的 MLP 人工神经网络。我的目标是尝试重新创建 MATLAB 的 ANN 所产生的精度,但我什至还没有接近。我使用与 MATLAB 相同的参数;相同数量的隐藏节点 (20)、1000 个纪元、0.01 的学习率 (alpha) 和相同的数据(显然),但我的代码在改进结果方面没有取得任何进展,而 MATLAB 的准确度约为 98%。

我尝试通过 MATLAB 进行调试,看看它在做什么,但运气不太好。我相信 MATLAB 将输入数据缩放到 0 到 1 之间,并为输入添加偏差,这两种方法我都在我的 Python 代码中使用过。

MATLAB 正在做什么才能产生如此高的结果?或者,更有可能的是,我在 Python 代码中做错了什么,导致结果如此糟糕?我能想到的只是权重启动不佳、数据读取不正确、处理数据操作不正确、激活函数不正确/较差(我也尝试过 tanh,结果相同)。

我的尝试如下,基于我在网上找到的代码,并稍微调整以读取我的数据,而 MATLAB 脚本(仅 11 行代码)低于此。底部是我使用的数据集的链接(我也是通过 MATLAB 获得的):

感谢您的帮助。

Main.py

import numpy as np
import Process
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix, classification_report
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import LabelBinarizer
import warnings


def sigmoid(x):
return 1.0/(1.0 + np.exp(-x))


def sigmoid_prime(x):
return sigmoid(x)*(1.0-sigmoid(x))


class NeuralNetwork:

def __init__(self, layers):

self.activation = sigmoid
self.activation_prime = sigmoid_prime

# Set weights
self.weights = []
# layers = [2,2,1]
# range of weight values (-1,1)
# input and hidden layers - random((2+1, 2+1)) : 3 x 3
for i in range(1, len(layers) - 1):
r = 2*np.random.random((layers[i-1] + 1, layers[i] + 1)) - 1
self.weights.append(r)
# output layer - random((2+1, 1)) : 3 x 1
r = 2*np.random.random((layers[i] + 1, layers[i+1])) - 1
self.weights.append(r)

def fit(self, X, y, learning_rate, epochs):
# Add column of ones to X
# This is to add the bias unit to the input layer
ones = np.atleast_2d(np.ones(X.shape[0]))
X = np.concatenate((ones.T, X), axis=1)

for k in range(epochs):

i = np.random.randint(X.shape[0])
a = [X[i]]

for l in range(len(self.weights)):
dot_value = np.dot(a[l], self.weights[l])
activation = self.activation(dot_value)
a.append(activation)
# output layer
error = y[i] - a[-1]
deltas = [error * self.activation_prime(a[-1])]

# we need to begin at the second to last layer
# (a layer before the output layer)
for l in range(len(a) - 2, 0, -1):
deltas.append(deltas[-1].dot(self.weights[l].T)*self.activation_prime(a[l]))

# reverse
# [level3(output)->level2(hidden)] => [level2(hidden)->level3(output)]
deltas.reverse()

# backpropagation
# 1. Multiply its output delta and input activation
# to get the gradient of the weight.
# 2. Subtract a ratio (percentage) of the gradient from the weight.
for i in range(len(self.weights)):
layer = np.atleast_2d(a[i])
delta = np.atleast_2d(deltas[i])
self.weights[i] += learning_rate * layer.T.dot(delta)

def predict(self, x):
a = np.concatenate((np.ones(1).T, np.array(x)))
for l in range(0, len(self.weights)):
a = self.activation(np.dot(a, self.weights[l]))
return a

# Create neural net, 13 inputs, 20 hidden nodes, 3 outputs
nn = NeuralNetwork([13, 20, 3])
data = Process.readdata('wine')
# Split data out into input and output
X = data[0]
y = data[1]
# Normalise input data between 0 and 1.
X -= X.min()
X /= X.max()

# Split data into training and test sets (15% testing)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.15)

# Create binay output form
y_ = LabelBinarizer().fit_transform(y_train)

# Train data
lrate = 0.01
epoch = 1000
nn.fit(X_train, y_, lrate, epoch)

# Test data
err = []
for e in X_test:
# Create array of output data (argmax to get classification)
err.append(np.argmax(nn.predict(e)))

# Hide warnings. UndefinedMetricWarning thrown when confusion matrix returns 0 in any one of the classifiers.
warnings.filterwarnings('ignore')
# Produce confusion matrix and classification report
print(confusion_matrix(y_test, err))
print(classification_report(y_test, err))

# Plot actual and predicted data
plt.figure(figsize=(10, 8))
target, = plt.plot(y_test, color='b', linestyle='-', lw=1, label='Target')
estimated, = plt.plot(err, color='r', linestyle='--', lw=3, label='Estimated')
plt.legend(handles=[target, estimated])
plt.xlabel('# Samples')
plt.ylabel('Classification Value')
plt.grid()
plt.show()

Process.py

import csv
import numpy as np


# Add constant column of 1's
def addones(arrayvar):
return np.hstack((np.ones((arrayvar.shape[0], 1)), arrayvar))


def readdata(loc):
# Open file and calculate the number of columns and the number of rows. The number of rows has a +1 as the 'next'
# operator in num_cols has already pasted over the first row.
with open(loc + '.input.csv') as f:
file = csv.reader(f, delimiter=',', skipinitialspace=True)
num_cols = len(next(file))
num_rows = len(list(file))+1

# Create a zero'd array based on the number of column and rows previously found.
x = np.zeros((num_rows, num_cols))
y = np.zeros(num_rows)

# INPUT #
# Loop through the input file and put each row into a new row of 'samples'
with open(loc + '.input.csv', newline='') as csvfile:
file = csv.reader(csvfile, delimiter=',')
count = 0
for row in file:
x[count] = row
count += 1

# OUTPUT #
# Do the same and loop through the output file.
with open(loc + '.output.csv', newline='') as csvfile:
file = csv.reader(csvfile, delimiter=',')
count = 0
for row in file:
y[count] = row[0]
count += 1

# Set data type
x = np.array(x).astype(np.float)
y = np.array(y).astype(np.int)

return x, y

MATLAB 脚本

%% LOAD DATA 
[x1,t1] = wine_dataset;

%% SET UP NN
net = patternnet(20);
net.trainFcn = 'traingd';
net.layers{2}.transferFcn = 'logsig';
net.derivFcn = 'logsig';

%% TRAIN AND TEST
[net,tr] = train(net,x1,t1);

数据文件可以在这里下载: input output

最佳答案

我认为您混淆了术语epochstep。如果您已经训练了一个epoch,它通常指的是运行完所有数据。

例如:如果您有 10,000 个样本,那么您已将所有 10,000 个样本(不考虑样本的随机抽样)放入您的模型中,并每次采取一步(更新您的权重)。

修复方法:延长网络运行时间:

nn.fit(X_train, y_, lrate, epoch*len(X))

奖金:MatLab 的文档将纪元转换为(迭代) here这是误导性的,但对其发表评论here这基本上就是我上面写的。

关于python - 梯度下降 ANN - MATLAB 正在做什么而我没有做什么?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/34098558/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com