gpt4 book ai didi

machine-learning - 用于读取图像的tensorflow cifar10代码修改

转载 作者:行者123 更新时间:2023-11-30 09:21:44 25 4
gpt4 key购买 nike

我正在尝试修改 cifar10.py 的代码,以便能够将图像传输到网络。

我实际上能够运行代码并开始训练过程,但一段时间后,如果我运行张量板,在“图像”部分下我总是有相同的图像。此外,交叉熵变为零。我认为我加载的图像是错误的。

这是代码

   def distorted_inputs():
#Reading the dirs file where all the directories of the images are stored
filedirs = [line.rstrip('\n') for line in open('image_dirs.txt')]

#create a list of files
filenames = []
i = 0

for f in filedirs:
png_files_path = glob.glob(os.path.join(f, '*.[pP][nN][gG]'))
print('found ' + str(len(png_files_path)) + ' files in ' + f)
for filename in png_files_path:
#storing file_name label
s = filename + " " + str(i)
filenames.append(s)
i = i+1

# Create a queue that produces the filenames to read and the labels
filename_queue = tf.train.string_input_producer(filenames)

my_img, label = read_my_file_format(filename_queue.dequeue())
label = tf.string_to_number(label, tf.int32)
init_op = tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init_op)

# Start populating the filename queue.
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)

image = my_img.eval()

coord.request_stop()
coord.join(threads)

reshaped_image = tf.cast(image, tf.float32)

resized_image = tf.image.resize_image_with_crop_or_pad(reshaped_image,IMAGE_SIZE, IMAGE_SIZE)

distorted_image = tf.image.random_crop(reshaped_image, [24, 24])

# Randomly flip the image horizontally.
distorted_image = tf.image.random_flip_left_right(distorted_image)

# Because these operations are not commutative, consider randomizing
# randomize the order their operation.
distorted_image = tf.image.random_brightness(distorted_image,max_delta=63)
distorted_image = tf.image.random_contrast(distorted_image,lower=0.2, upper=1.8)

# Subtract off the mean and divide by the variance of the pixels.
float_image = tf.image.per_image_whitening(distorted_image)

# Ensure that the random shuffling has good mixing properties.
min_fraction_of_examples_in_queue = 0.4
min_queue_examples = int(NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN *min_fraction_of_examples_in_queue)
print ('Filling queue with ITSD images before starting to train. ''This will take a few minutes.')

# Generate a batch of images and labels by building up a queue of examples.
return _generate_image_and_label_batch(float_image, label, min_queue_examples)

图像读取部分来自https://github.com/HamedMP/ImageFlow自定义阅读器来自Tensorflow read images with labels相关函数实现如下

 def read_my_file_format(filename_and_label_tensor):
"""Consumes a single filename and label as a ' '-delimited string.

Args:
filename_and_label_tensor: A scalar string tensor.

Returns:
Two tensors: the decoded image, and the string label.
"""
filename, label = tf.decode_csv(filename_and_label_tensor, [[""], [""]], " ")

file_contents = tf.read_file(filename)
example = tf.image.decode_png(file_contents)
return example, label

谢谢

最佳答案

您可以使用我创建的这段代码来解决我的分类问题:

        resized_image = cv2.resize(image, (WIDTH, HEIGHT))
label = np.uint8(nclass)

arr = np.uint8([0 for x in range(image_bytes)])
# fill the label:
arr[0] = label
arr_cnt = 1

# fill the image (row-major order). first R values, then G values then B values
for y in range(0, HEIGHT):
for x in range(0, WIDTH):
arr[arr_cnt] = np.uint8(resized_image[x, y, 2]) # R
arr[arr_cnt + 1024] = np.uint8(resized_image[x, y, 1]) # G
arr[arr_cnt + 2048] = np.uint8(resized_image[x, y, 0]) # B

arr_cnt += 1

print "train arr:", arr[0], arr[3072]
train_arr = np.append(train_arr, arr)
#print train_arr[file_in_dir*3073]
else:
invalids_cnt += 1
#print "image", files_in_dir[file_in_dir], "is invalid"

# Write array to train.bin file:
with open('data_batch_%d.bin' % nclass, 'wb') as f:
f.write(train_arr)
f.close()

这里,调整大小的图像是一个输入图像“image”的调整大小版本。接下来,我创建一个 3073 字节的数组:第一个字节 = 标签,接下来的 1024 个字节 = 图像的红色值,接下来的 1024 个字节 = 图像的绿色值,接下来的 1024 个字节 = 图像的蓝色值。

我对每个输入图像执行此操作,然后将其连接成一个大的二进制数组,该数组写入二进制文件“data_batch_%d”

我已经在此要点中发布了我的完整脚本(对于一般用途可能更难理解):gist

关于machine-learning - 用于读取图像的tensorflow cifar10代码修改,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/34653643/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com