gpt4 book ai didi

python - 尝试在烤宽面条基本示例(稍作修改)上使用自己的数据集来制作用于人脸识别的神经网络

转载 作者:行者123 更新时间:2023-11-30 09:21:24 26 4
gpt4 key购买 nike

我正在做基本的烤宽面条示例: https://github.com/Lasagne/Lasagne/blob/master/examples/mnist.py

我通过将其与另一个类似的示例结合起来对其进行了轻微修改。

我正在尝试运行 CNN 模型,我在 CNN def 中添加了一些额外的输入,但它不应该有任何不同。还将示例中输入层的默认值 28 更改为 60(对于高度和宽度),稍后在代码中使用类,但代码“卡在”最后一个网络行,这意味着代码是仍在运行,但没有任何反应。 Output when running the code. input_var 在主循环中定义如下:

input_var = T.tensor4('input_var')

其余代码:

def build_cnn(classes, height, width, input_var=None):

print("Input layer, with height: {}, width: {} and input var: {}".format(height, width, input_var))

network = lasagne.layers.InputLayer(shape = (None, 1, height, width),
input_var=input_var)


print("Convolutional layer with 32 kernels of size 5x5")
network = lasagne.layers.Conv2DLayer(network,
num_filters = 32,
filter_size = (5, 5),
nonlinearity = lasagne.nonlinearities.rectify,
W = lasagne.init.HeNormal(gain = 'relu'))

编辑:好吧,根据我迄今为止的尝试,问题似乎出在我自己的数据集上。我已经重新调整了我的数据集以匹配 MNIST 数据集(例如)。 X_train 的形状为 [图像、 channel 、高度、宽度]。其中 channel = 1,高度、宽度 = 60。检索这些的代码是:

def load_images():
dataset_path = os.path.abspath("C:/Users/laende/Dropbox/Skole UiS/4. semester/Master/Master/data/test_database")
[bilder, label, names] = read_images1(dataset_path, (28, 28))
label = np.array(label)

bilder = bilder / np.float32(256)
bilder = bilder[:, newaxis, :, :]

X_train1, X_test1, Y_train1, Y_test1 = train_test_split(bilder, label, test_size = 0.2)

list_of_labels = list(xrange(max(label) + 1))
classes = len(list_of_labels)

return X_train1, X_test1, Y_train1, Y_test1, classes

其中 read_images1 是:

 def read_images1(path, sz = None, channel = None):
c = 0
X = []
y = []
folder_names = []
for dirname, dirnames, filenames, in os.walk(path):
for subdirname in dirnames:
subject_path = os.path.join(dirname, subdirname)
folder_names.append(subdirname)
for filename in os.listdir(subject_path):
try:
im = cv2.imread(os.path.join(subject_path, filename), cv2.IMREAD_GRAYSCALE)

if (sz is not None):
im = cv2.resize(im, sz)

X.append(np.asarray(im, dtype = np.uint8))
y.append(c)

except IOError, (errno, strerror):
print "I/O error ({0]): {1}".format(errno, strerror)
except:
print "unexpected error:", sys.exc_info()[0]
raise
c = c + 1
return [X, y, folder_names]

main 中运行的代码:

def main(model='mlp', num_epochs=100):
# Load the dataset

print("Loading data...")
mnist = 1
if mnist == 1:
classes = 10
X_train, y_train, X_val, y_val, X_test, y_test = load_dataset()

dataset = {
'train': {'X': X_train, 'y': y_train},
'test': {'X': X_test, 'y': y_test}}
shape = dataset['train']['X'][0].shape

else:
X_train, X_test, y_train, y_test, classes = load_images()

dataset = {
'train': {'X': X_train, 'y': y_train},
'test': {'X': X_test, 'y': y_test}}
shape = dataset['train']['X'][0].shape

input_var = T.tensor4('inputs')
target_var = T.ivector('targets')

print("Building model and compiling functions...")
if model == 'mlp':
network = build_mlp(height=int(shape[1]),
width=int(shape[2]),
channel=int(shape[0]),
classes=int(classes),
input_var=input_var)

如果 mnist = 1(在 main 中),代码运行正常,如果我尝试使用自己的数据集,它会卡在 build_mlp 中(类似于 cnn 的原始问题):

def build_mlp(classes, channel, height, width, input_var=None):

neurons = int(height * width)

network = lasagne.layers.InputLayer(shape = (None, channel, height, width),
input_var=input_var)

network = lasagne.layers.DropoutLayer(network, p = 0.2)

#Code gets stuck on this point, running forever, doing nothing.
#No error messages received either.
network = lasagne.layers.DenseLayer(
network,
num_units = neurons,
nonlinearity = lasagne.nonlinearities.rectify,
W = lasagne.init.GlorotUniform())

编辑2:经过一段时间的挣扎后,我发现在 read_images1() 中完成的图像大小调整导致了问题:

 def read_images1(path, sz = None, channel = None):
c = 0
X = []
y = []
folder_names = []
for dirname, dirnames, filenames, in os.walk(path):
for subdirname in dirnames:
subject_path = os.path.join(dirname, subdirname)
folder_names.append(subdirname)
for filename in os.listdir(subject_path):
try:
im = cv2.imread(os.path.join(subject_path, filename), cv2.IMREAD_GRAYSCALE)
#This part caused the problems.
if (sz is not None):
im = cv2.resize(im, sz)

X.append(np.asarray(im, dtype = np.uint8))
y.append(c)

except IOError, (errno, strerror):
print "I/O error ({0]): {1}".format(errno, strerror)
except:
print "unexpected error:", sys.exc_info()[0]
raise
c = c + 1
return [X, y, folder_names]

如果我没有通过任何大小调整并使用文件夹中的默认图像大小,神经网络就能够编译。有谁知道为什么吗?我将 read_images1() 更新为:

 def read_images1(path, sz = None, na = False):
"""

:param path: sti til mappe med underliggende mapper tilhørende personer.
:param sz: Størrelse på bildefilene
:return: returnerer liste av bilder, labels og navn
"""
c = 0
X = []
y = []
folder_names = []
for dirname, dirnames, filenames, in os.walk(path):
for subdirname in dirnames:
subject_path = os.path.join(dirname, subdirname)
folder_names.append(subdirname)
for filename in os.listdir(subject_path):
try:
im = cv2.imread(os.path.join(subject_path, filename), cv2.IMREAD_GRAYSCALE)

if (sz is not None):
im = cv2.resize(im, dsize=sz, interpolation = cv2.INTER_LANCZOS4)

if (na == True):
im = im[newaxis, :, :]


X.append(np.asarray(im, dtype = np.uint8))
y.append(c)

except IOError, (errno, strerror):
print "I/O error ({0]): {1}".format(errno, strerror)
except:
print "unexpected error:", sys.exc_info()[0]
raise
c = c + 1
return [X, y, folder_names]

如果我使用 sz = None 和 na = True 运行程序,则它可以工作。如果为 sz 参数指定任何大小,则代码在尝试再次编译神经网络时会被卡住。

最佳答案

好吧,我想我可以在这里看到一些问题,不确定您遇到的是哪一个......

  1. read_images1() 中,X 是 numpy 数组的 Python 列表。它在哪里转换为单个 numpy 数组?尝试添加 X = numpy.asarray(X) 。您还需要将其 reshape 为 (n_images, n_channels, width, height),其中我假设 n_channels=1 表示灰度。网络需要 4D 输入而不是 3D。

  2. 此代码list_of_labels = list(xrange(max(label) + 1)); classes = len(list_of_labels) 假设标签是从 0 到 N 的连续数字。是吗?

  3. 您的 build_mlp(classes, height, width, input_var=None) 与原始示例 build_mlp(input_var=None) 非常不同。原始示例显然有效,因此无论出现什么问题都与差异有关。最大的区别之一是您不断分配给同一个变量,就像这样 network = lasagne.layers.DenseLayer(network, ...) ,其中原始的每一层都有不同的变量 l_hid1 = lasagne.layers.DenseLayer(l_in_drop, ...)

  4. 此外,如果它在 build_mlp() 期间挂起,那么显然问题不在于您如何读取图像。尝试将原始版本的 build_mlp() 与您的图像一起使用。尝试单独运行它。跳过图像读取,只需使用常量参数调用 build_mlp() 即可。

关于python - 尝试在烤宽面条基本示例(稍作修改)上使用自己的数据集来制作用于人脸识别的神经网络,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/36556704/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com