gpt4 book ai didi

Python sklearn. Linear_model : LinearRegression() ValueError occured when . 预测()

转载 作者:行者123 更新时间:2023-11-30 09:21:15 26 4
gpt4 key购买 nike

我的训练矩阵 X 的形状为 (5182, 19231),y 是长度为 5182 的 1 和 0 的列表。我的测试矩阵的形状为 (496, 5477)。我将它们存储在单独的 pickle 文件中。这是我的代码:

def read(pklFile1):
f=open(pklFile1, 'rb')
Y = cPickle.load(f)
f.close()
return Y
if __name__ == '__main__':
X=read("results/train_feature.pkl")
y=read("results/train_label.pkl")
test=read("results/test_feature.pkl")
target=read("test_label.pkl")
clf=LogisticRegression()
clf=clf.fit(X, y)
predicted= clf.predict(test)
accuracy=np.mean(predicted == target)
print accuracy

当我运行我的代码时,运行时出现以下消息
预测 = clf.predict(test):

ValueError: X has 5477 features per sample; expecting 19231

如何修复它?

最佳答案

您在 19231 个特征上训练了线性模型,但想要预测一些仅包含 5477 个特征的新样本。 这不是线性模型(或大多数分类器)的工作原理。特征数量必须相同!

由 19231 个变量的线性组合组成的线性模型应该如何仅适用于 5477 个变量?如果某些变量在预测过程中未知,您可以对它们进行插补(例如设置为零或平均值),但即使这种方法也需要知道变量的准确映射。训练中的哪个变量对应于预测中的哪个变量。

关于Python sklearn. Linear_model : LinearRegression() ValueError occured when . 预测(),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/37446104/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com