- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在使用插入符包运行逻辑回归分析。
数据以 18x6 矩阵的形式输入
到目前为止,除了 predict()
函数之外,一切都很好。
R 告诉我 type
参数应该是 raw
或 prob
但 raw
只是输出最后一列(二项式变量的值)的精确副本。 prob
给我以下错误:
"Error in dimnames(out)[[2]] <- modelFit$obsLevels : length of 'dimnames' [2] not equal to array extent In addition: Warning message: 'newdata' had 7 rows but variables found have 18 rows"
install.packages("pbkrtest")
install.packages("caret")
install.packages('e1071', dependencies=TRUE)
#install.packages('caret', dependencies = TRUE)
require(caret)
library(caret)
A=matrix(
c(
64830,18213,4677,24761,9845,17504,22137,12531,5842,28827,51840,4079,1000,2069,969,9173,11646,946,66161,18852,5581,27219,10159,17527,23402,11409,8115,31425,55993,0,0,1890,1430,7873,12779,627,68426,18274,5513,25687,10971,14104,19604,13438,6011,30055,57242,0,0,2190,1509,8434,10492,755,69716,18366,5735,26556,11733,16605,20644,15516,5750,31116,64330,0,0,1850,1679,9233,12000,500,73128,18906,5759,28555,11951,19810,22086,17425,6152,28469,72020,0,0,1400,1750,8599,12000,500,1,1,1,0,1,0,0,0,0,1,0,1,1,1,1,1,1,1
),
nrow = 18,
ncol = 6,
byrow = FALSE) #"bycol" does NOT exist
################### data set as vectors
a<-c(64830,18213,4677,24761,9845,17504,22137,12531,5842,28827,51840,4079,1000,2069,969,9173,11646,946)
b<-c(66161,18852,5581,27219,10159,17527,23402,11409,8115,31425,55993,0,0,1890,1430,7873,12779,627)
c<-c(68426,18274,5513,25687,10971,14104,19604,13438,6011,30055,57242,0,0,2190,1509,8434,10492,755)
d<-c(69716,18366,5735,26556,11733,16605,20644,15516,5750,31116,64330,0,0,1850,1679,9233,12000,500)
e<-c(73128,18906,5759,28555,11951,19810,22086,17425,6152,28469,72020,0,0,1400,1750,8599,12000,500)
f<-c(1,1,1,0,1,0,0,0,0,1,0,1,1,1,1,1,1,1)
######################
n<-nrow(A);
K<-ncol(A)-1;
Train <- createDataPartition(f, p=0.6, list=FALSE) #60% of data set is used as training.
training <- A[ Train, ]
testing <- A[ -Train, ]
nrow(training)
#this is the logistic formula:
#estimates from logistic regression characterize the relationship between the predictor and response variable on a log-odds scale
mod_fit <- train(f ~ a + b + c + d +e, data=training, method="glm", family="binomial")
mod_fit
#this isthe exponential function to calculate the odds ratios for each preditor:
exp(coef(mod_fit$finalModel))
predict(mod_fit, newdata=training)
predict(mod_fit, newdata=testing, type="prob")
最佳答案
我不太确定理解,但 A 是 (a,b,c,d,e,f) 的矩阵。因此您不需要创建两个对象。
install.packages("pbkrtest")
install.packages("caret")
install.packages('e1071', dependencies=TRUE)
#install.packages('caret', dependencies = TRUE)
require(caret)
library(caret)
A=matrix(
c(
64830,18213,4677,24761,9845,17504,22137,12531,5842,28827,51840,4079,1000,2069,969,9173,11646,946,66161,18852,5581,27219,10159,17527,23402,11409,8115,31425,55993,0,0,1890,1430,7873,12779,627,68426,18274,5513,25687,10971,14104,19604,13438,6011,30055,57242,0,0,2190,1509,8434,10492,755,69716,18366,5735,26556,11733,16605,20644,15516,5750,31116,64330,0,0,1850,1679,9233,12000,500,73128,18906,5759,28555,11951,19810,22086,17425,6152,28469,72020,0,0,1400,1750,8599,12000,500,1,1,1,0,1,0,0,0,0,1,0,1,1,1,1,1,1,1
),
nrow = 18,
ncol = 6,
byrow = FALSE) #"bycol" does NOT exist
A <- data.frame(A)
colnames(A) <- c('a','b','c','d','e','f')
A$f <- as.factor(A$f)
Train <- createDataPartition(A$f, p=0.6, list=FALSE) #60% of data set is used as training.
training <- A[ Train, ]
testing <- A[ -Train, ]
nrow(training)
要预测变量,您必须输入解释变量而不是要预测的变量
mod_fit <- train(f ~ a + b + c + d +e, data=training, method="glm", family="binomial")
mod_fit
#this isthe exponential function to calculate the odds ratios for each preditor:
exp(coef(mod_fit$finalModel))
predict(mod_fit, newdata=training[,-which(colnames(training)=="f")])
predict(mod_fit, newdata=testing[,-which(colnames(testing)=="f")])
关于r - Predict() R 函数插入符包错误 : "newdata" rows different, "type"不接受,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/37477007/
这里有没有人在使用Google Prediction API?为了什么?它“起作用”了吗? 最佳答案 如果您正在寻找实际案例,请查看此案例automatically assigns priority
无论如何,学习R ..: 在简单的x和y回归中,我输入: predict(data1.lm, interval="prediction") 和 predict(data1.lm, interval="
我创建并调整了多个模型,但在尝试预测它们时遇到了问题。我首先按如下方式运行代码来调整 LDA 模型。 library(MASS) library(caret) library(randomForest
问题 我在 R 中训练了一个线性回归来预测 this.target来自 city , 数据框中的变量 data .这个训练是在数据的一个子集上完成的,它由 train.index 指定。 . mode
我正在检查 tf-serving 示例,发现 inception_client.py mnist_client.py 时使用 result = Stub.Predict(request, 10.0)使
我已在 Google ML Engine 中上传了该模型的一个版本,其中包含 saved_model.pb 和一个变量文件夹。当我尝试执行命令时: gcloud ml-engine local pre
请先在我们的 GitHub 存储库中搜索类似问题。如果您找不到类似的示例,您可以使用以下模板: 系统(请填写以下信息): - 操作系统:Ubuntu 18.04 - Python版本:3.6.7 -
我正在研究一个简单的 LL(1) 解析器生成器,我遇到了给定某些输入语法的 PREDICT/PREDICT 冲突问题。例如,给定如下输入语法: E → E + E | P P → 1 我可以
我正在对具有多个预测变量的线性模型的预测值求和,如下例所示,并希望计算该总和的组合方差、标准误差和可能的置信区间。 lm.tree <- lm(Volume ~ poly(Girth,2), data
我是 R 和统计学的新手。所以这个问题可能有点愚蠢,但我想知道 R 中的 predict() 和 predict.lm() 之间是否有任何区别?我认为它们是相同的,但如果它们是相同的,为什么会有两个不
我尝试了针对this question而发布的答案,但是错误没有改变。我试图以相同的方式预处理训练集和测试集。它们来自两个不同的文件,我不确定我的老师是否会把我混合在一起,所以在拆分它们之前进行预处理
使用随机森林包:- #install.packages("randomForest") library(randomForest) 我使用在线代码在我的系统上运行随机森林。我得到了一个具有混淆矩阵和准
我有一个模型 (fit),基于上个月之前的历史信息。现在我想使用我的模型来预测当月的情况。当我尝试调用以下代码时: predicted fit$modelInfo$label [1]“随机森林” 因此
我正在尝试找出应用于列表的操作。我有列表/数组名称预测并执行以下指令集。 predictions[predictions >> a = np.array([1,2,3,4,5]) #define ar
此 R 代码引发警告 # Fit regression model to each cluster y fit$rank 检查 另一种方法是拥有比可用变量更多的参数: fit2 <- lm(y ~
我不是 R 专家。我正在尝试计算多项式模型生成的偏差: f calc.bias(f, polydeg, x))。我使用的整个代码: library(PolynomF) f <- function(x)
谁能帮我解决我的问题?我似乎无法从互联网上得到任何答案。我一直在寻找一整天。所以这是我的问题。我正在使用 opencv4android 2.4.10 和 Android Studio 作为我的 IDE
我可以使用哪种方法来根据姓氏来预测某人的国籍? 我有大量的文字和作者姓氏。我想确定哪些语言是由拉丁语使用者撰写的,哪些文本是由以英语为母语的使用者撰写的,以便研究一组中的某些写作风格模式是否与另一组中
我很好奇克服“冷启动”问题的方法/途径是什么,当新用户或项目进入系统时,由于缺乏有关该新实体的信息,因此进行推荐是一个问题。 我可以考虑做一些基于预测的推荐(例如性别、国籍等)。 最佳答案 您可以冷启
我正在使用零膨胀负二项式模型(包:pscl)对电影通过联系网络(基于电话数据)的传播进行建模 m1 我的变量是: 因变量: 扩散链的长度(计数 [0,36]) 自变量: 电影特征(虚拟变量和连续变量
我是一名优秀的程序员,十分优秀!