- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试在 JSON 文件上创建 LDA 模型。
使用 JSON 文件创建 Spark 上下文:
import org.apache.spark.sql.SparkSession
val sparkSession = SparkSession.builder
.master("local")
.appName("my-spark-app")
.config("spark.some.config.option", "config-value")
.getOrCreate()
val df = spark.read.json("dbfs:/mnt/JSON6/JSON/sampleDoc.txt")
显示df
应该显示DataFrame
display(df)
对文本进行标记
import org.apache.spark.ml.feature.RegexTokenizer
// Set params for RegexTokenizer
val tokenizer = new RegexTokenizer()
.setPattern("[\\W_]+")
.setMinTokenLength(4) // Filter away tokens with length < 4
.setInputCol("text")
.setOutputCol("tokens")
// Tokenize document
val tokenized_df = tokenizer.transform(df)
这应该显示tokenized_df
display(tokenized_df)
获取停用词
%sh wget http://ir.dcs.gla.ac.uk/resources/linguistic_utils/stop_words > -O /tmp/stopwords
可选:将停用词复制到 tmp 文件夹
%fs cp file:/tmp/stopwords dbfs:/tmp/stopwords
收集所有停用词
val stopwords = sc.textFile("/tmp/stopwords").collect()
过滤掉停用词
import org.apache.spark.ml.feature.StopWordsRemover
// Set params for StopWordsRemover
val remover = new StopWordsRemover()
.setStopWords(stopwords) // This parameter is optional
.setInputCol("tokens")
.setOutputCol("filtered")
// Create new DF with Stopwords removed
val filtered_df = remover.transform(tokenized_df)
显示过滤后的df
应该验证停用词
已被删除
display(filtered_df)
向量化单词出现的频率
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.sql.Row
import org.apache.spark.ml.feature.CountVectorizer
// Set params for CountVectorizer
val vectorizer = new CountVectorizer()
.setInputCol("filtered")
.setOutputCol("features")
.fit(filtered_df)
验证矢量化器
vectorizer.transform(filtered_df)
.select("id", "text","features","filtered").show()
在此之后,我发现在 LDA 中安装此向量化器
时出现问题。我认为 CountVectorizer 的问题是给出稀疏向量,但 LDA 需要密集向量。仍在尝试找出问题所在。
这是 map 无法转换的异常(exception)情况。
import org.apache.spark.mllib.linalg.Vector
val ldaDF = countVectors.map {
case Row(id: String, countVector: Vector) => (id, countVector)
}
display(ldaDF)
异常:
org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 4083.0 failed 4 times, most recent failure: Lost task 0.3 in stage 4083.0 (TID 15331, 10.209.240.17): scala.MatchError: [0,(1252,[13,17,18,20,30,37,45,50,51,53,63,64,96,101,108,125,174,189,214,221,224,227,238,268,291,309,328,357,362,437,441,455,492,493,511,528,561,613,619,674,764,823,839,980,1098,1143],[1.0,1.0,2.0,1.0,1.0,1.0,2.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,3.0,1.0,2.0,1.0,5.0,1.0,2.0,2.0,1.0,4.0,1.0,2.0,3.0,1.0,1.0,1.0,1.0,1.0,2.0,1.0,1.0,1.0,1.0,1.0,2.0,1.0,2.0,1.0,1.0,1.0])] (of class org.apache.spark.sql.catalyst.expressions.GenericRowWithSchema)
LDA 有一个工作示例,不会引发任何问题
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.sql.Row
import org.apache.spark.mllib.linalg.Vector
import org.apache.spark.mllib.clustering.{DistributedLDAModel, LDA}
val a = Vectors.dense(Array(1.0,2.0,3.0))
val b = Vectors.dense(Array(3.0,4.0,5.0))
val df = Seq((1L,a),(2L,b),(2L,a)).toDF
val ldaDF = df.map { case Row(id: Long, countVector: Vector) => (id, countVector) }
val model = new LDA().setK(3).run(ldaDF.javaRDD)
display(df)
唯一的区别是在第二个片段中我们有一个密集矩阵。
最佳答案
这与稀疏性无关。自 Spark 2.0.0 ML Transformers
不再生成 o.a.s.mllib.linalg.VectorUDT
而是生成 o.a.s.ml.linalg.VectorUDT
并在本地映射到子类o.a.s.ml.linalg.Vector
。这些与旧的 MLLib API 不兼容,旧的 MLLib API 在 Spark 2.0.0 中即将弃用。
您可以使用 Vectors.fromML
在“旧”之间进行转换:
import org.apache.spark.mllib.linalg.{Vectors => OldVectors}
import org.apache.spark.ml.linalg.{Vectors => NewVectors}
OldVectors.fromML(NewVectors.dense(1.0, 2.0, 3.0))
OldVectors.fromML(NewVectors.sparse(5, Seq(0 -> 1.0, 2 -> 2.0, 4 -> 3.0)))
但如果您已经使用 ML 转换器,那么使用 LDA 的 ML
实现更有意义。
为了方便起见,您可以使用隐式转换:
import scala.languageFeature.implicitConversions
object VectorConversions {
import org.apache.spark.mllib.{linalg => mllib}
import org.apache.spark.ml.{linalg => ml}
implicit def toNewVector(v: mllib.Vector) = v.asML
implicit def toOldVector(v: ml.Vector) = mllib.Vectors.fromML(v)
}
关于scala - Spark 2.0 中访问向量列时出现 MatchError,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/42924036/
SQLite、Content provider 和 Shared Preference 之间的所有已知区别。 但我想知道什么时候需要根据情况使用 SQLite 或 Content Provider 或
警告:我正在使用一个我无法完全控制的后端,所以我正在努力解决 Backbone 中的一些注意事项,这些注意事项可能在其他地方更好地解决......不幸的是,我别无选择,只能在这里处理它们! 所以,我的
我一整天都在挣扎。我的预输入搜索表达式与远程 json 数据完美配合。但是当我尝试使用相同的 json 数据作为预取数据时,建议为空。点击第一个标志后,我收到预定义消息“无法找到任何内容...”,结果
我正在制作一个模拟 NHL 选秀彩票的程序,其中屏幕右侧应该有一个 JTextField,并且在左侧绘制弹跳的选秀球。我创建了一个名为 Ball 的类,它实现了 Runnable,并在我的主 Draf
这个问题已经有答案了: How can I calculate a time span in Java and format the output? (18 个回答) 已关闭 9 年前。 这是我的代码
我有一个 ASP.NET Web API 应用程序在我的本地 IIS 实例上运行。 Web 应用程序配置有 CORS。我调用的 Web API 方法类似于: [POST("/API/{foo}/{ba
我将用户输入的时间和日期作为: DatePicker dp = (DatePicker) findViewById(R.id.datePicker); TimePicker tp = (TimePic
放宽“邻居”的标准是否足够,或者是否有其他标准行动可以采取? 最佳答案 如果所有相邻解决方案都是 Tabu,则听起来您的 Tabu 列表的大小太长或您的释放策略太严格。一个好的 Tabu 列表长度是
我正在阅读来自 cppreference 的代码示例: #include #include #include #include template void print_queue(T& q)
我快疯了,我试图理解工具提示的行为,但没有成功。 1. 第一个问题是当我尝试通过插件(按钮 1)在点击事件中使用它时 -> 如果您转到 Fiddle,您会在“内容”内看到该函数' 每次点击都会调用该属
我在功能组件中有以下代码: const [ folder, setFolder ] = useState([]); const folderData = useContext(FolderContex
我在使用预签名网址和 AFNetworking 3.0 从 S3 获取图像时遇到问题。我可以使用 NSMutableURLRequest 和 NSURLSession 获取图像,但是当我使用 AFHT
我正在使用 Oracle ojdbc 12 和 Java 8 处理 Oracle UCP 管理器的问题。当 UCP 池启动失败时,我希望关闭它创建的连接。 当池初始化期间遇到 ORA-02391:超过
关闭。此题需要details or clarity 。目前不接受答案。 想要改进这个问题吗?通过 editing this post 添加详细信息并澄清问题. 已关闭 9 年前。 Improve
引用这个plunker: https://plnkr.co/edit/GWsbdDWVvBYNMqyxzlLY?p=preview 我在 styles.css 文件和 src/app.ts 文件中指定
为什么我的条形这么细?我尝试将宽度设置为 1,它们变得非常厚。我不知道还能尝试什么。默认厚度为 0.8,这是应该的样子吗? import matplotlib.pyplot as plt import
当我编写时,查询按预期执行: SELECT id, day2.count - day1.count AS diff FROM day1 NATURAL JOIN day2; 但我真正想要的是右连接。当
我有以下时间数据: 0 08/01/16 13:07:46,335437 1 18/02/16 08:40:40,565575 2 14/01/16 22:2
一些背景知识 -我的 NodeJS 服务器在端口 3001 上运行,我的 React 应用程序在端口 3000 上运行。我在 React 应用程序 package.json 中设置了一个代理来代理对端
我面临着一个愚蠢的问题。我试图在我的 Angular 应用程序中延迟加载我的图像,我已经尝试过这个2: 但是他们都设置了 src attr 而不是 data-src,我在这里遗漏了什么吗?保留 d
我是一名优秀的程序员,十分优秀!