- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我对 PyTorch 非常陌生,而且对一般神经网络也相当陌生。
我试图构建一个可以猜测性别名字的神经网络,并且基于判断国籍的 PyTorch RNN 教程。
我的代码运行没有错误,但损失几乎没有变化,让我认为权重没有更新......
这是我的输入/输出/目标张量设置的问题吗?或者我的训练功能有问题?我很迷失,任何帮助将不胜感激:cold_sweat:
这是我的代码:
from __future__ import unicode_literals, print_function, division
from io import open
import glob
import unicodedata
import string
import torch
import torchvision
import torch.nn as nn
import torch.optim as optim
import random
from torch.autograd import Variable
"""------GLOBAL VARIABLES------"""
all_letters = string.ascii_letters + " .,;'"
num_letters = len(all_letters)
all_names = {}
genders = ["Female", "Male"]
"""-------DATA EXTRACTION------"""
def findFiles(path):
return glob.glob(path)
def unicodeToAscii(s):
return ''.join(
c for c in unicodedata.normalize('NFD', s)
if unicodedata.category(c) != 'Mn'
and c in all_letters
)
# Read a file and split into lines
def readLines(filename):
lines = open(filename, encoding='utf-8').read().strip().split('\n')
return [unicodeToAscii(line) for line in lines]
for file in findFiles("/home/andrew/PyCharm/PycharmProjects/CantStop/data/names/*.txt"):
gender = file.split("/")[-1].split(".")[0]
names = readLines(file)
all_names[gender] = names
"""-----DATA INTERPRETATION-----"""
def nameToTensor(name):
tensor = torch.zeros(len(name), 1, num_letters)
for index, letter in enumerate(name):
tensor[index][0][all_letters.find(letter)] = 1
return tensor
def outputToGender(output):
gender, gender_index = output.data.topk(1)
if gender_index[0][0] == 0:
return "Female"
return "Male"
"""------NETWORK SETUP------"""
class Net(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(Net, self).__init__()
self.hidden_size = hidden_size
#Layer 1
self.Lin1 = nn.Linear(input_size+hidden_size, int((input_size+hidden_size)/2))
self.ReLu1 = nn.ReLU()
self.Batch1 = nn.BatchNorm1d(int((input_size+hidden_size)/2))
#Layer 2
self.Lin2 = nn.Linear(int((input_size+hidden_size)/2), output_size)
self.ReLu2 = nn.ReLU()
self.Batch2 = nn.BatchNorm1d(output_size)
self.softMax = nn.LogSoftmax()
#Hidden layer
self.HidLin = nn.Linear(input_size+hidden_size, hidden_size)
self.HidReLu = nn.ReLU()
self.HidBatch = nn.BatchNorm1d(hidden_size)
def forward(self, input, hidden):
comb = torch.cat((input, hidden), 1)
hidden = self.HidBatch(self.HidReLu(self.HidLin(comb)))
output1 = self.Batch1(self.ReLu1(self.Lin1(comb)))
output2 = self.softMax(self.Batch2(self.ReLu2(self.Lin2(output1))))
return output2, hidden
def initHidden(self):
return Variable(torch.zeros(1, self.hidden_size))
NN = Net(num_letters, 128, 2)
"""------TRAINING------"""
def getRandomTrainingEx():
gender = genders[random.randint(0, 1)]
name = all_names[gender][random.randint(0, len(all_names[gender])-1)]
gender_tensor = Variable(torch.LongTensor([genders.index(gender)]))
name_tensor = Variable(nameToTensor(name))
return gender_tensor, name_tensor, gender
def train(input, target):
hidden = NN.initHidden()
loss_func = nn.NLLLoss()
alpha = 0.01
NN.zero_grad()
for i in range(input.size()[0]):
output, hidden = NN(input[i], hidden)
loss = loss_func(output, target)
loss.backward()
for w in NN.parameters():
w.data.add_(-alpha, w.grad.data)
return output, loss
for i in range(5000):
gender_tensor, name_tensor, gender = getRandomTrainingEx()
output, loss = train(name_tensor, gender_tensor)
if i%500 == 0:
print("Guess: %s, Correct: %s, Loss: %s" % (outputToGender(output), gender, loss.data[0]))
这是输出:
Guess: Male, Correct: Male, Loss: 0.6931471824645996
Guess: Male, Correct: Female, Loss: 0.7400936484336853
Guess: Male, Correct: Male, Loss: 0.6755779385566711
Guess: Female, Correct: Female, Loss: 0.6648257374763489
Guess: Male, Correct: Male, Loss: 0.6765623688697815
Guess: Female, Correct: Male, Loss: 0.7330614924430847
Guess: Female, Correct: Female, Loss: 0.6565149426460266
Guess: Male, Correct: Female, Loss: 0.6946508884429932
Guess: Female, Correct: Female, Loss: 0.6621525287628174
Guess: Male, Correct: Male, Loss: 0.6662092804908752
Process finished with exit code 0
最佳答案
我建议您将add_
更改为sub_
。 add_ 可能会让你远离最佳点。
w.data.sub_(f.grad.data * alpha)
因为,权重更新公式中有一个减法。
顺便说一下,尝试将 alpha 增加/减少到 0.1 0.05 0.01。如果alpha太大,可能会错过最佳点。如果 alpha 太小,则需要很长时间。
关于python - RNN 参数没有更新?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45016714/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!