gpt4 book ai didi

python - TFLearn 时间序列预测 预测

转载 作者:行者123 更新时间:2023-11-30 09:19:28 27 4
gpt4 key购买 nike

定义我的神经网络并训练我的模型后:

net = tflearn.input_data(shape=[None, 1, 1])
tnorm = tflearn.initializations.uniform(minval=-1.0, maxval=1.0)
net = tflearn.lstm(net, timesteps, dropout=0.8)

net = tflearn.fully_connected(net, 1, activation='linear', weights_init=tnorm)
net = tflearn.regression(net, optimizer='adam', learning_rate=0.001,
loss='mean_square', metric='R2')
# Define model
model = tflearn.DNN(net, clip_gradients=0.)
model.fit(X, y, n_epoch=nb_epoch, batch_size=batch_size, shuffle=False, show_metric=True)
score = model.evaluate(X, y, batch_size=128)
model.save('ModeSpot.tflearn')

我现在遇到了一个问题,我发现进行时间序列预测的大部分教程都使用测试集来预测(他们将测试集提供给 .predict())。问题是,实际上我们不知道这一点,因为这是我们想要预测的。

现在我正在使用它:

def forecast_lstm(model, X):
X = X.reshape(len(X), 1, 1)
yhat = model.predict(X)
return yhat[0, 0]

# split data into train and test-sets
train, test = supervised_values[0:-10000], supervised_values[-10000:]

# transform the scale of the data
scaler, train_scaled, test_scaled = scale(train, test)

# Build neural network
net = tflearn.input_data(shape=[None, 1, 1])
tnorm = tflearn.initializations.uniform(minval=-1.0, maxval=1.0)
net = tflearn.lstm(net, 1, dropout=0.3)
net = tflearn.fully_connected(net, 1, activation='linear', weights_init=tnorm)
net = tflearn.regression(net, optimizer='adam', learning_rate=0.001,
loss='mean_square', metric='R2')
lstm_model = tflearn.DNN(net, clip_gradients=0.)
lstm_model.load('ModeSpot.tflearn')

# forecast the entire training dataset to build up state for forecasting
train_reshaped = train_scaled[:, 0].reshape(len(train_scaled), 1, 1)
lstm_model.predict(train_reshaped)
# walk-forward validation on the test data
predictions = list()
error_scores = list()
for i in range(len(test_scaled)):
# make one-step forecast
X, y = test_scaled[i, 0:-1], test_scaled[i, -1]
yhat = forecast_lstm(lstm_model, X)
# invert scaling
yhat2 = invert_scale(scaler, X, yhat)
# # invert differencing
yhat3 = inverse_difference(raw_values, yhat2, len(test_scaled) + 1 - i)
# store forecast
predictions.append(yhat3)

但它只适用于我的测试集。我该如何预测下一个 x 值?我想我在某个地方看到过,要预测 T 处的值,我必须使用 T-1 处的值进行预测(然后使用 T 处的值进行 T+1 等,直到达到我想要的预测数量)。这是一个好方法吗?

我尝试过这样做:

def forecast_lstm2(model, X):
X = X.reshape(-1, 1, 1)
yhat = model.predict(X)
return yhat[0, 0]

test = list()
X, y = train_scaled[0, 0:-1], train_scaled[0, -1]
test.append(X)
for i in range(len(test_scaled)):
# make one-step forecast
yhat = forecast_lstm2(lstm_model, test[i])
test.append(yhat)

# invert scaling
yhat2 = invert_scale(scaler, test[i+1], yhat)
# # invert differencing
yhat3 = inverse_difference(raw_values, yhat2, len(test) + 1 - i)
# store forecast
predictions.append(yhat3)

但它没有达到预期的效果(经过一些预测,它总是给出相同的结果)。

感谢您的关注和时间。

最佳答案

最后这似乎有效: # 进行一步预测 def Forecast_lstm2(模型, X): X = X.reshape(-1, 1, 1) yhat = model.predict(X) 返回 yhat[0, 0]

def prediction(spotId):
epoch = [5, 15, 25, 35, 45, 50, 100]
for e in epoch:
tf.reset_default_graph()

# Load CSV file, indicate that the first column represents labels
data = read_csv('nowcastScaled'+str(spotId)+'.csv', header=0, parse_dates=[0], index_col=0, squeeze=True, date_parser=parser)

# transform data to be stationary
raw_values = data.values
diff_values = difference(raw_values, 1)

# transform data to be supervised learning
supervised = timeseries_to_supervised(diff_values, 1)
supervised_values = supervised.values

# split data into train and test-sets (I removed the testing data from the excel file)
train = supervised_values[x:]

# transform the scale of the data (and removed anything related to testing set)
scaler, train_scaled = scale(train)
# Build neural network
net = tflearn.input_data(shape=[None, 1, 1])
tnorm = tflearn.initializations.uniform(minval=-1.0, maxval=1.0)
net = tflearn.lstm(net, 1, dropout=0.8)
net = tflearn.fully_connected(net, 1, activation='linear', weights_init=tnorm)
net = tflearn.regression(net, optimizer='adam', learning_rate=0.0001,
loss='mean_square', metric='R2')
lstm_model = tflearn.DNN(net, clip_gradients=0.)
lstm_model.load('ModeSpot'+str(spotId)+'Epoch'+str(e)+'.tflearn')

# forecast the entire training dataset to build up state for forecasting
train_reshaped = train_scaled[:, 0].reshape(len(train_scaled), 1, 1)
lstm_model.predict(train_reshaped)
# walk-forward validation on the test data
predictions = list()
predictionFeeder = list()
X, y = train_scaled[0, 0:-1], train_scaled[0, -1]
predictionFeeder.append(X)
for i in range(0, 10000):
# make one-step forecast
yhat = forecast_lstm2(lstm_model, predictionFeeder[i])
predictionFeeder.append(yhat)
# invert scaling
yhat2 = invert_scale(scaler, predictionFeeder[i + 1], yhat)
yhat3 = inverse_difference(raw_values, yhat2, 10000 + 1 - i)
predictions.append(yhat3)

关于python - TFLearn 时间序列预测 预测,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45343742/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com