- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
下面是用于训练预训练模型的 train.Prototxt 文件。
name: "TempWLDNET"
layer {
name: "data"
type: "ImageData"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
mirror: true
crop_size: 224
mean_file: "mean.binaryproto"
}
image_data_param {
source: "train.txt"
batch_size: 25
new_height: 256
new_width: 256
}
}
layer {
name: "data"
type: "ImageData"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
mirror: false
crop_size: 224
mean_file: "painmean.binaryproto"
}
image_data_param {
source: "test.txt"
batch_size: 25
new_height: 256
new_width: 256
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 96
kernel_size: 7
stride: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "norm1"
type: "LRN"
bottom: "conv1"
top: "norm1"
lrn_param {
local_size: 5
alpha: 0.0005
beta: 0.75
}
}
layer {
name: "pool1"
type: "Pooling"
bottom: "norm1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 3
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 2
kernel_size: 5
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv3"
type: "Convolution"
bottom: "pool2"
top: "conv3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "conv4"
type: "Convolution"
bottom: "conv3"
top: "conv4"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu4"
type: "ReLU"
bottom: "conv4"
top: "conv4"
}
layer {
name: "conv5"
type: "Convolution"
bottom: "conv4"
top: "conv5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu5"
type: "ReLU"
bottom: "conv5"
top: "conv5"
}
layer {
name: "pool5"
type: "Pooling"
bottom: "conv5"
top: "pool5"
pooling_param {
pool: MAX
kernel_size: 3
stride: 3
}
}
layer {
name: "fc6"
type: "InnerProduct"
bottom: "pool5"
top: "fc6"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 4048
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu6"
type: "ReLU"
bottom: "fc6"
top: "fc6"
}
layer {
name: "drop6"
type: "Dropout"
bottom: "fc6"
top: "fc6"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc7"
type: "InnerProduct"
bottom: "fc6"
top: "fc7"
# Note that lr_mult can be set to 0 to disable any fine-tuning of this, and any other, layer
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 4048
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu7"
type: "ReLU"
bottom: "fc7"
top: "fc7"
}
layer {
name: "drop7"
type: "Dropout"
bottom: "fc7"
top: "fc7"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc8_temp"
type: "InnerProduct"
bottom: "fc7"
top: "fc8_temp"
# lr_mult is set to higher than for other layers, because this layer is starting from random while the others are already trained
param {
lr_mult: 10
decay_mult: 1
}
param {
lr_mult: 20
decay_mult: 0
}
inner_product_param {
num_output: 16
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "accuracy"
type: "Accuracy"
bottom: "fc8_temp"
bottom: "label"
top: "accuracy"
include {
phase: TEST
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "fc8_temp"
bottom: "label"
top: "loss"
}
使用上述 prototxt 文件在训练结束时测试集报告的准确率为 92%。更多详情请参见How to evaluate the accuracy and loss of a trained model is good or not in caffe?
我在 13000 次迭代结束时拍摄了模型快照,并使用下面的 python 脚本,尝试构建混淆矩阵,报告的准确度为 74%。
#!/usr/bin/python
# -*- coding: utf-8 -*-
import sys
import caffe
import numpy as np
import argparse
from collections import defaultdict
TRAIN_DATA_ROOT='/Images/test/'
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--proto', type=str, required=True)
parser.add_argument('--model', type=str, required=True)
parser.add_argument('--meanfile', type=str, required=True)
parser.add_argument('--labelfile', type=str, required=True)
args = parser.parse_args()
proto_data = open(args.meanfile, 'rb').read()
a = caffe.io.caffe_pb2.BlobProto.FromString(proto_data)
mean = caffe.io.blobproto_to_array(a)[0]
caffe.set_mode_gpu()
count = 0
correct = 0
matrix = defaultdict(int) # (real,pred) -> int
labels_set = set()
net = caffe.Net(args.proto, args.model, caffe.TEST)
# load input and configure preprocessing
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
transformer.set_mean('data', mean)
transformer.set_transpose('data', (2,0,1))
transformer.set_channel_swap('data', (2,1,0))
transformer.set_raw_scale('data', 1)
#note we can change the batch size on-the-fly
#since we classify only one image, we change batch size from 10 to 1
net.blobs['data'].reshape(1,3,224,224)
#load the image in the data layer
f = open(args.labelfile, "r")
for line in f.readlines():
parts = line.split()
example_image = parts[0]
label = int(parts[1])
im = caffe.io.load_image(TRAIN_DATA_ROOT + example_image)
print(im.shape)
net.blobs['data'].data[...] = transformer.preprocess('data', im)
out = net.forward()
plabel = int(out['prob'][0].argmax(axis=0))
count += 1
iscorrect = label == plabel
correct += (1 if iscorrect else 0)
matrix[(label, plabel)] += 1
labels_set.update([label, plabel])
if not iscorrect:
print("\rError: expected %i but predicted %i" \
% (label, plabel))
sys.stdout.write("\rAccuracy: %.1f%%" % (100.*correct/count))
sys.stdout.flush()
print(", %i/%i corrects" % (correct, count))
print ("")
print ("Confusion matrix:")
print ("(r , p) | count")
for l in labels_set:
for pl in labels_set:
print ("(%i , %i) | %i" % (l, pl, matrix[(l,pl)]))
我正在使用deploy.protxt
name: "CaffeNet"
input: "data"
input_shape {
dim: 1
dim: 3
dim: 224
dim: 224
}
layers {
name: "conv1"
type: CONVOLUTION
bottom: "data"
top: "conv1"
blobs_lr: 1
weight_decay: 1
blobs_lr: 2
weight_decay: 0
convolution_param {
num_output: 96
kernel_size: 7
stride: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layers {
name: "relu1"
type: RELU
bottom: "conv1"
top: "conv1"
}
layers {
name: "norm1"
type: LRN
bottom: "conv1"
top: "norm1"
lrn_param {
local_size: 5
alpha: 0.0005
beta: 0.75
}
}
layers {
name: "pool1"
type: POOLING
bottom: "norm1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 3
}
}
layers {
name: "conv2"
type: CONVOLUTION
bottom: "pool1"
top: "conv2"
blobs_lr: 1
weight_decay: 1
blobs_lr: 2
weight_decay: 0
convolution_param {
num_output: 256
pad: 2
kernel_size: 5
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 1
}
}
}
layers {
name: "relu2"
type: RELU
bottom: "conv2"
top: "conv2"
}
layers {
name: "pool2"
type: POOLING
bottom: "conv2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
name: "conv3"
type: CONVOLUTION
bottom: "pool2"
top: "conv3"
blobs_lr: 1
weight_decay: 1
blobs_lr: 2
weight_decay: 0
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layers {
name: "relu3"
type: RELU
bottom: "conv3"
top: "conv3"
}
layers {
name: "conv4"
type: CONVOLUTION
bottom: "conv3"
top: "conv4"
blobs_lr: 1
weight_decay: 1
blobs_lr: 2
weight_decay: 0
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 1
}
}
}
layers {
name: "relu4"
type: RELU
bottom: "conv4"
top: "conv4"
}
layers {
name: "conv5"
type: CONVOLUTION
bottom: "conv4"
top: "conv5"
blobs_lr: 1
weight_decay: 1
blobs_lr: 2
weight_decay: 0
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layers {
name: "relu5"
type: RELU
bottom: "conv5"
top: "conv5"
}
layers {
name: "pool5"
type: POOLING
bottom: "conv5"
top: "pool5"
pooling_param {
pool: MAX
kernel_size: 3
stride: 3
}
}
layers {
name: "fc6"
type: INNER_PRODUCT
bottom: "pool5"
top: "fc6"
blobs_lr: 1
weight_decay: 1
blobs_lr: 2
weight_decay: 0
inner_product_param {
num_output: 4048
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 1
}
}
}
layers {
name: "relu6"
type: RELU
bottom: "fc6"
top: "fc6"
}
layers {
name: "drop6"
type: DROPOUT
bottom: "fc6"
top: "fc6"
dropout_param {
dropout_ratio: 0.5
}
}
layers {
name: "fc7"
type: INNER_PRODUCT
bottom: "fc6"
top: "fc7"
# Note that blobs_lr can be set to 0 to disable any fine-tuning of this, and any other, layers
blobs_lr: 1
weight_decay: 1
blobs_lr: 2
weight_decay: 0
inner_product_param {
num_output: 4048
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 1
}
}
}
layers {
name: "relu7"
type: RELU
bottom: "fc7"
top: "fc7"
}
layers {
name: "drop7"
type: DROPOUT
bottom: "fc7"
top: "fc7"
dropout_param {
dropout_ratio: 0.5
}
}
layers {
name: "fc8_temp"
type: INNER_PRODUCT
bottom: "fc7"
top: "fc8_temp"
# blobs_lr is set to higher than for other layers, because this layers is starting from random while the others are already trained
blobs_lr: 10
weight_decay: 1
blobs_lr: 20
weight_decay: 0
inner_product_param {
num_output: 16
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layers {
name: "prob"
type: SOFTMAX
bottom: "fc8_temp"
top: "prob"
}
用于运行脚本的命令是
python confusion.py --proto deploy.prototxt --model models/model_iter_13000.caffemodel --meanfile mean.binaryproto --labelfile NamesTest.txt
我的疑问是,为什么当我使用相同的模型和相同的测试集时,准确性会存在差异。我做错了什么吗?先感谢您。
最佳答案
您的验证步骤(测试阶段)和您正在运行的 python 代码之间存在差异:
您正在使用不同均值文件进行训练和测试 (!):对于phase: TRAIN
,您正在使用mean_file: "mean. binaryproto"
而对于 phase: TEST
您使用的是 mean_file: "painmean.binaryproto"
。您的 python 评估代码使用训练均值文件而不是验证。
采用不同的训练/验证设置并不是一个好的做法。
您的输入图像具有 new_height: 256
和 copr_size: 224
。此设置意味着 caffe 读取图像,将其缩放为 256x256
,然后裁剪中心尺寸为 224x224
。你的python代码似乎只有scale输入为 224x224
而不进行裁剪:您可以使用不同的输入来喂养网络。
请确认您的训练 prototxt 和部署 prototxt 之间没有任何其他差异。
关于machine-learning - caffe 和 pycaffe 报告的准确度不同,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46890054/
// Assuming that data are on the CPU initially, and we have a blob. const Dtype* foo; Dtype* bar;
我计划使用 NYU depth v2 数据集实现一个 CNN,它可以从单个图像估计深度。通过本教程,我了解到在 Caffe 上实现处理分类问题的 CNN 很容易。我很好奇 Caffe 是否适合涉及多维
我用图像训练了一个模型。现在想将 fc-6 功能提取到 .npy 文件中。我正在使用 caffe.set_mode_gpu() 运行 caffe.Classifier 并提取特征。 而不是每帧提取和保
我通过 apt install 命令在我的 Ubuntu v18 VM 上安装了 caffe-cpu。我正在努力找出安装目录所在的位置,如果我错了请纠正我,但我相信没有安装目录。我尝试执行的 NN 模
这个问题在这里已经有了答案: how to calculate a net's FLOPs in CNN [closed] (4 个回答) 4年前关闭。 我在tensorflow tutorial看到
似乎this related PR现在已经死了,有没有解决方法可以使用 early stopping在咖啡厅?也许在 Caffe 之上使用 Python? 最佳答案 第一部分很容易手动完成:让我们监控
当我尝试在MacbookPro(El Capitan)上安装最新的caffe时,出现以下错误。怎么了?如何解决? 我在此网站上发现了一些类似的问题,不幸的是显示的修复似乎是ubuntu特有的。 先感谢
average_loss有什么用?有人可以举一个例子或用外行的术语解释吗? 最佳答案 您可以登录 caffe.proto文件。当前版本中的第 151 行对 average_loss 给出了以下注释:
我想先分别处理不同类型的数据,然后将它们融合到一个公共(public)层中。这在 Caffe 中是否可行,如果可以,最好的方法是什么? 我读过可以在同一个 prototxt 文件中定义多个数据层。但是
我正在尝试将几个底部 Blob 合并为一个顶部 Blob ,然后将其馈送到下一层。 这些 Blob 来自不同的卷积/FC层,因此它们的形状不同。 我尝试了 concat 层,但使用轴 0 或 1 时,
包 Digits 需要使用 Caffe 安装目录的位置设置环境变量。 安装Caffe的简单方法是apt-get install caffe-cuda .但是,我无法弄清楚它的安装位置。没有安装在hom
我在 Caffe 中训练过 imagenet。现在我正在尝试为我的模型和 caffe 提供的训练模型计算 ROC/AUC。我有两个问题: 1) ROC/AUC 主要用于二进制类,但我也发现在某些情况下
我正在尝试使我的 Caffe 代码适应 tensorflow。我想知道将我的 train.txt 和 test.txt 转换为适用于 tensorflow 的最佳方法是什么。 在我的 train.tx
有没有办法安装/运行修改后的 Caffe 项目,例如 SegNet或FCN-Berkley-Vision在 Windows 上? 有Microsoft-led project to bring Caf
我想用python设置一个caffe CNN,使用caffe.NetSpec()界面。虽然我看到我们可以把测试网放在 solver.prototxt , 我想写在model.prototxt具有不同的
我有一个预训练的 faster-rcnn caffemodel。我可以使用 net.params[pr][0].data 获取模型的权重。到目前为止,权重是 numpy float32 类型。我想将它
我正在做一个将 keras json 模型转换为 caffe prototxt 的项目 caffe 支持任意填充值 keras(在 tensorflow 之上)支持“相同”和“有效”值 对于 caff
我正在尝试让 CaffeOnSpark 在本地运行,并且我按照 CaffeOnSpark wiki 上的此过程进行操作:https://github.com/yahoo/CaffeOnSpark/wi
我通过caffe使用我自己的数据集训练了网络,现在我想用C++写一个分类代码。我的机器 (linux) 仅适用于 CPU! (我使用 GPU 在 VM 中训练网络)。 当我尝试“包含”特定的 Caff
我知道可以(以编程方式)使用 caffe.Netspec() 设计一个网络,基本上主要目的是编写它的 prototxt。 net = caffe.NetSpec() .. (define) .. wi
我是一名优秀的程序员,十分优秀!