gpt4 book ai didi

python - 无法使用 python 识别 spacy 中的两个或多个标签

转载 作者:行者123 更新时间:2023-11-30 09:18:20 25 4
gpt4 key购买 nike

我是 spacy 和 python 的新手,我正在使用 python 和 nltk 训练我自己的 spacy 模型,这是我训练数据和测试数据的代码,如果我给出与文本数据相同的测试数据,则输出是正确的,但是我无法识别超过 2 个标签,每次编译代码时,标签识别都是不同且不正确的,我引用了 spacy 网站,但我无法找到解决方案。请帮助我!!

from __future__ import unicode_literals, print_function

import plac
import random
from pathlib import Path
import spacy


# new entity label

# training data
# Note: If you're using an existing model, make sure to mix in examples of
# other entity types that spaCy correctly recognized before. Otherwise, your
# model might learn the new type, but "forget" what it previously knew.
# https://explosion.ai/blog/pseudo-rehearsal-catastrophic-forgetting
TRAIN_DATA = [

("Duck quacks, Dog barks", {
'entities': [(0,4,'Bird'), (13,16,'Animal')]
}),

("Duck eats fish, Dog eats meat", {
'entities': [(0,4,'Bird'), (16,19,'Animal')]
}),

("Duck eats fish, Dog eats meat", {
'entities': [(0,4,'Bird'), (16,19,'Animal')]
})


]


@plac.annotations(
model=("Model name. Defaults to blank 'en' model.", "option", "m", str),
new_model_name=("New model name for model meta.", "option", "nm", str),
output_dir=("Optional output directory", "option", "o", Path),
n_iter=("Number of training iterations", "option", "n", int))
def main(model=None, new_model_name='Animal', output_dir=None, n_iter=20):
"""Set up the pipeline and entity recognizer, and train the new
entity."""
if model is not None:
nlp = spacy.load(model) # load existing spaCy model
print("Loaded model '%s'" % model)
else:
nlp = spacy.blank('en') # create blank Language class
print("Created blank 'en' model")

# Add entity recognizer to model if it's not in the pipeline
# nlp.create_pipe works for built-ins that are registered with spaCy
if 'ner' not in nlp.pipe_names:
ner = nlp.create_pipe('ner')
nlp.add_pipe(ner)
# otherwise, get it, so we can add labels to it
else:
ner = nlp.get_pipe('ner')

# add new entity label to entity recognizer
for _, annotations in TRAIN_DATA:
for ent in annotations.get('entities'):
ner.add_label(ent[2])
print("Label '%s'" % ent[2])

# get names of other pipes to disable them during training
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'ner']
with nlp.disable_pipes(*other_pipes): # only train NER
optimizer = nlp.begin_training()
for itn in range(n_iter):
random.shuffle(TRAIN_DATA)
losses = {}
for text, annotations in TRAIN_DATA:
nlp.update([text], [annotations], sgd=optimizer, drop=0.35,
losses=losses)
print(losses)

# test the trained model
test_text = 'Duck eats Nippot, Dog eats meat'
doc = nlp(test_text)
print("Entities in '%s'" % test_text)
for ent in doc.ents:
print(ent.label_, ent.text)

# save model to output directory
if output_dir is not None:
output_dir = Path(output_dir)
if not output_dir.exists():
output_dir.mkdir()
nlp.meta['name'] = new_model_name # rename model
nlp.to_disk(output_dir)
print("Saved model to", output_dir)

# test the saved model
print("Loading from", output_dir)
nlp2 = spacy.load(output_dir)
doc2 = nlp2(test_text)
for ent in doc2.ents:
print(ent.label_, ent.text)


if __name__ == '__main__':
plac.call(main)

最佳答案

更改是针对脚本中的优化器代码。另外,避免添加重复的标签,因此创建一个标签列表,然后通过 ner.add_label 添加。

TRAIN_DATA = [
("Duck quacks, Dog barks", {
'entities': [(0,4,'Bird'), (13,16,'Animal')]
}),

("Duck eats fish, Dog eats meat", {
'entities': [(0,4,'Bird'), (16,19,'Animal')]
}),

("Duck eats fish, Dog eats meat", {
'entities': [(0,4,'Bird'), (16,19,'Animal')]
})


]

label_ = ['Bird', 'Animal']

@plac.annotations(
model=("Model name. Defaults to blank 'en' model.", "option", "m", str),
new_model_name=("New model name for model meta.", "option", "nm", str),
output_dir=("Optional output directory", "option", "o", Path),
n_iter=("Number of training iterations", "option", "n", int))

def main(model=None, new_model_name='Animal', output_dir=None, n_iter=20):
"""Set up the pipeline and entity recognizer, and train the new
entity."""
if model is not None:
nlp = spacy.load(model) # load existing spaCy model
print("Loaded model '%s'" % model)
else:
nlp = spacy.blank('en') # create blank Language class
print("Created blank 'en' model")

# Add entity recognizer to model if it's not in the pipeline
# nlp.create_pipe works for built-ins that are registered with spaCy
if 'ner' not in nlp.pipe_names:
ner = nlp.create_pipe('ner')
nlp.add_pipe(ner)
# otherwise, get it, so we can add labels to it
else:
ner = nlp.get_pipe('ner')

# add new entity label to entity recognizer
# for _, annotations in TRAIN_DATA:
# for ent in annotations.get('entities'):
# ner.add_label(ent[2])
# print("Label '%s'" % ent[2])
for LABEL in label_: # add new entity label to entity recognizer
ner.add_label(LABEL) # this way you avoid adding duplicate labels.

if model is None:
optimizer = nlp.begin_training()
# Note that 'begin_training' initializes the models, so it'll zero out
# existing entity types.
else:
optimizer = nlp.entity.create_optimizer()


# get names of other pipes to disable them during training
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'ner']
with nlp.disable_pipes(*other_pipes): # only train NER
# optimizer = nlp.begin_training() # made changes above for the same
for itn in range(n_iter):
random.shuffle(TRAIN_DATA)
losses = {}
for text, annotations in TRAIN_DATA:
nlp.update([text], [annotations], sgd=optimizer, drop=0.35,
losses=losses)
print(losses)

# test the trained model
test_text = 'Duck and Dog eats Nippot, Dog eats meat'
doc = nlp(test_text)
print("Entities in '%s'" % test_text)
for ent in doc.ents:
print(ent.label_, ent.text)

# save model to output directory
if output_dir is not None:
output_dir = Path(output_dir)
if not output_dir.exists():
output_dir.mkdir()
nlp.meta['name'] = new_model_name # rename model
nlp.to_disk(output_dir)
print("Saved model to", output_dir)

# test the saved model
print("Loading from", output_dir)
nlp2 = spacy.load(output_dir)
doc2 = nlp2(test_text)
for ent in doc2.ents:
print(ent.label_, ent.text)

输出:

 Entities in 'Duck and Dog eats Nippot, Dog eats meat'
Bird Duck
Animal Dog
Animal Dog

关于python - 无法使用 python 识别 spacy 中的两个或多个标签,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/49612091/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com