gpt4 book ai didi

python - 将向量 w 投影到向量 v 上并绘制垂直线 - 为 PCA 做准备

转载 作者:行者123 更新时间:2023-11-30 09:17:51 25 4
gpt4 key购买 nike

我想做矢量投影作为 PCA 的准备,我遵循 This矢量投影计算教程。 enter image description herew 是“指向”数据点的向量,v 是跨越 w 投影到的直线的向量。

代码是:

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import style
style.use('fivethirtyeight')
from sklearn.preprocessing import StandardScaler

# Normalize the input data
A = np.array([[10,8],[1,2],[7,5],[3,5],[7,6],[8,7],[9,9],[4,5],[6,5],[6,8],
[1,9],[10,2],[6,3],[2,5],[1,14],[8,8],[9,5],[4,4],[5,6],[8,8],
[11,9],[10,12],[6,4],[5,2],[10,2],[8,3],[6,9],[0,4],[13,6],[9,6]])

A = StandardScaler(with_std=False,copy=False).fit_transform(A)


fig = plt.figure(figsize=(15,10))
ax0 = fig.add_subplot(111)
ax0.set_ylim(bottom=min(A[:,1])-3,top=max(A[:,1])+3)

ax0.scatter(A[:,0],A[:,1])

# Initialize a first vector a

v = np.array([1,0.5])




# Plot the vector v
#ax0.arrow(0,0,a[0],a[1],length_includes_head=True,width=0.03,color='green')


# Plot the line y=alpha*v defined by the vector a and passing the origin
ax0.plot(np.linspace(min(A[:,0])-3,max(A[:,0])+3),np.linspace(min(A[:,0])-3,max(A[:,0])+3)*(v[1]/v[0]),
'k--',linewidth=1.5,zorder=0)

# Run through all datapoints

coordinates_on_ba_run = [] # Store the coordinates of the projected points on a

for i in range(len(A[:,0])):
# Plot the vector v
#ax0.arrow(0,0,v[0],v[1],length_includes_head=True,width=0.03,color='green')


# Point on one of the datapoints and denote this vector with w
w = np.array([A[i][0],A[i][1]])
#ax0.arrow(0,0,w[0],w[1],length_includes_head=True,width=0.03,color='blue')

# Caclculate c and the projection vector cv. Additionally, test if the dot product of v and (w-cv) is zero

c = np.dot(w,v.reshape(2,1))/np.dot(v,v.reshape(2,1))
print(np.dot((w-c*v),v)) #This must be zero for each projection!
cv = c*v



# Draw a line from the datappoint in A to the tip of the vector cv.


ax0.plot([w[0],cv[0]],[w[1],cv[1]],linewidth=1,color='red',linestyle='--',zorder=0)




plt.show()

这给出了以下结果:

2.22044604925e-16
-2.22044604925e-16
0.0
0.0
2.77555756156e-17
-5.55111512313e-17
1.11022302463e-16
2.22044604925e-16
0.0
0.0
0.0
0.0
0.0
-2.22044604925e-16
0.0
-2.22044604925e-16
0.0
1.11022302463e-16
0.0
-2.22044604925e-16
0.0
-4.4408920985e-16
0.0
0.0
0.0
0.0
0.0
-2.22044604925e-16
-4.4408920985e-16
-2.22044604925e-16

enter image description here

所以代码正在工作,并且“控制”计算(np.dot((w-c*v),v))对于每个转换必须为零......因此结果应该是正确的...但是,正如您用肉眼所看到的,虚线不垂直于向量 v 所跨越的线。那么这只是一个可视化问题还是代码中存在错误?感谢任何帮助

最佳答案

发现错误了...如果你看一下轴的比例,你会发现它们不相等,也就是说,x 轴有限制 (-10,10),而 y 轴有限制 (- 6,10)... 因此,这会扭曲 View ,并且通过肉眼观察,红色虚线和 v 跨越的线之间的角度不是 90 度,而是取决于比率的其他角度。这也解释了为什么计算np.dot((w-c*v),v)返回零,这表明结果是正确的。

这是工作代码:

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import style
style.use('fivethirtyeight')
from sklearn.preprocessing import StandardScaler


# Normalize the input data
A = np.array([[10,8],[1,2],[7,5],[3,5],[7,6],[8,7],[9,9],[4,5],[6,5],[6,8],
[1,9],[10,2],[6,3],[2,5],[1,14],[8,8],[9,5],[4,4],[5,6],[8,8],
[11,9],[10,12],[6,4],[5,2],[10,2],[8,3],[6,9],[0,4],[13,6],[9,6]])

A = StandardScaler(with_std=False,copy=False).fit_transform(A)

fig = plt.figure(figsize=(10,10))
ax0 = fig.add_subplot(111)
ax0.set_aspect('equal')
ax0.set_xlim((-10,10))
ax0.set_ylim((-10,10))

ax0.scatter(A[:,0],A[:,1])


# Run through all the data

for i in range(len(A[:,0])):

# v
v = np.array([3,2])
ax0.plot(np.linspace(-10,10),np.linspace(-10,10)*(v[1]/v[0]),color='black',linestyle='--',linewidth=1.5)

# w
w = np.array([A[i][0],A[i][1]])
#ax0.arrow(0,0,w[0],w[1],length_includes_head=True,width=0.01,color='green')

# cv
cv = (np.dot(w,v))/np.dot(v,np.transpose(v))*v
#ax0.arrow(0,0,cv[0],cv[1],length_includes_head=True,width=0.005,color='black')
print(cv)

# line between w and cv
ax0.plot([w[0],cv[0]],[w[1],cv[1]],'r--',linewidth=1.5)


# Check the result
print(np.dot((w-cv),cv))

plt.show()

enter image description here

关于python - 将向量 w 投影到向量 v 上并绘制垂直线 - 为 PCA 做准备,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/50514783/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com