gpt4 book ai didi

python - 需要整数参数,得到 float

转载 作者:行者123 更新时间:2023-11-30 09:17:36 27 4
gpt4 key购买 nike

我正在尝试编写图像识别代码,以针对不同动物图像训练系统,这就是代码。我使用 anaconda 作为解释器,使用pycharm作为环境。

import tensorflow as tf
import os, sys
from PIL import Image

image_path = 'test_images/leopard2.jpg'

size = (299, 299)

infile = image_path
outfile = os.path.splitext(infile)[0] + '_resized.jpg'
try:
im = Image.open(infile)
im.thumbnail(size, Image.ANTIALIAS)
old_im_size = im.size

## By default, black colour would be used as the background for padding!
new_im = Image.new("RGB", size)

new_im.paste(im,(int(size[0]-old_im_size[0])/2,int(size[1]-
old_im_size[1])/2))

new_im.save(outfile, "JPEG")
except IOError:
print("Cannot resize '%s'") %infile



# Read in the image_data
image_data = tf.gfile.FastGFile(outfile, 'rb').read()

# Loads label file, strips off carriage return
label_lines = [line.rstrip() for line
in tf.gfile.GFile("output_labels.txt")]

# Unpersists graph from file
with tf.gfile.FastGFile("output_graph.pb", 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
_ = tf.import_graph_def(graph_def, name='')

init_ops = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init_ops)
# Feed the image_data as input to the graph and get first prediction
softmax_tensor = sess.graph.get_tensor_by_name('final_result:0')

predictions = sess.run(softmax_tensor, \
{'DecodeJpeg/contents:0': image_data})

# Sort to show labels of first prediction in order of confidence
top_k = predictions[0].argsort()[-len(predictions[0]):][::-1]

for node_id in top_k:
human_string = label_lines[node_id]
score = predictions[0][node_id]
print('%s (score = %.5f)' % (human_string, score))
os.remove(outfile)

出现的错误是

C:\Users\snklp\Anaconda3\envs\untitled\python.exe 
C:/Users/snklp/Downloads/Transfer-Learning-for-Animal-Classification-in-
Tensorflow-master/Transfer-Learning-for-Animal-Classification-in-Tensorflow-
master/test.py
Traceback (most recent call last):
File "C:/Users/snklp/Downloads/Transfer-Learning-for-Animal-Classification-
in-Tensorflow-master/Transfer-Learning-for-Animal-Classification-in-
Tensorflow-master/test.py", line 19, in <module>
new_im.paste(im,(int(size[0]-old_im_size[0])/2,int(size[1]-
old_im_size[1])/2))
File "C:\Users\snklp\Anaconda3\envs\untitled\lib\site-packages\PIL\Image.py",
line 1423, in paste
self.im.paste(im, box)
TypeError: integer argument expected, got float

Process finished with exit code 1

我使用的图像是 jpeg 格式,并且位于代码中定义的正确路径中。有人知道这里有什么问题吗?

最佳答案

除以 2 没有被 int() all 包裹。如果您的 (size[0]-old_im_size[0])(size[1]- old_im_size[1]) 出现奇怪的结果,则代码将会损坏。

试试这个:

new_im.paste(im,(int((size[0]-old_im_size[0])/2), int((size[1]- old_im_size[1])/2)))

关于python - 需要整数参数,得到 float ,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/51179084/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com