- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我一直在尝试自定义 LSTM 层以进一步改进。但是在我的自定义 LSTM 之后,池化层出现了一个看似正常的错误。
我的环境是:
Traceback (most recent call last):
File "E:/PycharmProjects/dialogResearch/dialog/classifier.py", line 60, in
model = build_model(word_dict, args.max_len, args.max_sents, args.embedding_dim)
File "E:\PycharmProjects\dialogResearch\dialog\model\keras_himodel.py", line 177, in build_model
l_dense = TimeDistributed(Dense(200))(l_lstm)
File "C:\ProgramData\Anaconda3\lib\site-packages\keras\engine\topology.py", line 592, in call
self.build(input_shapes[0])
File "C:\ProgramData\Anaconda3\lib\site-packages\keras\layers\wrappers.py", line 162, in build
assert len(input_shape) >= 3
AssertionError
我的自定义 LSTM 的代码是:
class CustomLSTM(Layer):
def __init__(self, output_dim, return_sequences, **kwargs):
self.init = initializers.get('normal')
# self.input_spec = [InputSpec(ndim=3)]
self.output_dim = output_dim
self.return_sequences = return_sequences
super(CustomLSTM, self).__init__(**kwargs)
def build(self, input_shape):
assert len(input_shape) == 3
self.original_shape = input_shape
self.Wi = self.add_weight('Wi', (input_shape[-1], self.output_dim), initializer=self.init, trainable=True)
self.Wf = self.add_weight('Wf', (input_shape[-1], self.output_dim), initializer=self.init, trainable=True)
self.Wo = self.add_weight('Wo', (input_shape[-1], self.output_dim), initializer=self.init, trainable=True)
self.Wu = self.add_weight('Wu', (input_shape[-1], self.output_dim), initializer=self.init, trainable=True)
self.Ui = self.add_weight('Ui', (self.output_dim, self.output_dim), initializer=self.init, trainable=True)
self.Uf = self.add_weight('Uf', (self.output_dim, self.output_dim), initializer=self.init, trainable=True)
self.Uo = self.add_weight('Uo', (self.output_dim, self.output_dim), initializer=self.init, trainable=True)
self.Uu = self.add_weight('Uu', (self.output_dim, self.output_dim), initializer=self.init, trainable=True)
self.bi = self.add_weight('bi', (self.output_dim,), initializer=self.init, trainable=True)
self.bf = self.add_weight('bf', (self.output_dim,), initializer=self.init, trainable=True)
self.bo = self.add_weight('bo', (self.output_dim,), initializer=self.init, trainable=True)
self.bu = self.add_weight('bu', (self.output_dim,), initializer=self.init, trainable=True)
super(CustomLSTM, self).build(input_shape)
def step_op(self, step_in, states):
i = K.softmax(K.dot(step_in, self.Wi) + K.dot(states[0], self.Ui) + self.bi)
f = K.softmax(K.dot(step_in, self.Wf) + K.dot(states[0], self.Uf) + self.bf)
o = K.softmax(K.dot(step_in, self.Wo) + K.dot(states[0], self.Uo) + self.bo)
u = K.tanh(K.dot(step_in, self.Wu) + K.dot(states[0], self.Uu) + self.bu)
c = i * u + f * states[1]
h = o * K.tanh(c)
return h, [h, c]
def call(self, x, mask=None):
init_states = [K.zeros((K.shape(x)[0], self.output_dim)),
K.zeros((K.shape(x)[0], self.output_dim))]
outputs = K.rnn(self.step_op, x, init_states)
if self.return_sequences:
return outputs[1]
else:
return outputs[0]
def compute_output_shape(self, input_shape):
return input_shape[0], input_shape[-1]
模型是:
def build_model(words, max_len, max_sents, embedding_dim):
sentence_input = Input(shape=(max_len,), dtype='int32')
embedding_layer = Embedding(len(words) + 1,
embedding_dim,
input_length=max_len,
trainable=True)
embedded_sequences = embedding_layer(sentence_input)
l_lstm = CustomLSTM(200, return_sequences=True)(embedded_sequences)
print(l_lstm.get_shape())
l_dense = TimeDistributed(Dense(200))(l_lstm)
l_att = AttLayer()(l_dense)
sentEncoder = Model(sentence_input, l_att)
review_input = Input(shape=(max_sents, max_len), dtype='int32')
review_encoder = TimeDistributed(sentEncoder)(review_input)
l_lstm_sent = CustomLSTM(200, return_sequences=True)(review_encoder)
l_dense_sent = TimeDistributed(Dense(200))(l_lstm_sent)
l_att_sent = AttLayer()(l_dense_sent)
preds = Dense(3, activation='softmax')(l_att_sent)
model = Model(review_input, preds)
optimizer = Nadam(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08, schedule_decay=0.004)
model.compile(loss='categorical_crossentropy',
optimizer=optimizer,
metrics=[precision, recall, f1, 'acc'])
return model
感谢您的帮助。
最佳答案
我认为发生错误是因为 return_sequences=True
时 compute_output_shape
返回的形状不正确。我会尝试以下操作:
def compute_output_shape(self, input_shape):
if self.return_sequences:
return input_shape
return (input_shape[0], input_shape[-1])
关于machine-learning - 通过自定义 LSTM 时出现形状错误,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/51440054/
我无法准确理解 LSTM 单元的范围——它如何映射到网络层。来自格雷夫斯 (2014): 在我看来,在单层网络中,layer = lstm 单元。这实际上如何在多层 rnn 中工作? 三层RNN LS
这是代码 model = Sequential() model.add(LSTM(256, input_shape=(None, 1), return_sequences=True)) model.a
为什么我们需要在pytorch中初始化LSTM中的隐藏状态h0。由于 h0 无论如何都会被计算并被覆盖?是不是很像 整合一个一 = 0 一个= 4 即使我们不做a=0,也应该没问题.. 最佳答案 重点
我正在尝试使用 LSTM 在 Deeplearning4j 中进行一些简单的时间序列预测,但我很难让它工作。 我有一个简单的文本文件,其中包含如下所示的数字列表,并希望网络学习预测下一个数字。 有没有
在大量阅读和绘制图表之后,我想我已经提出了一个模型,我可以将其用作更多测试我需要调整哪些参数和功能的基础。但是,我对如何实现以下测试用例感到困惑(所有数字都比最终模型小几个数量级,但我想从小处着手):
我正在尝试实现“Livelinet:用于预测教育视频中的活力的多模式深度循环神经网络”中的结构。 为了简单说明,我将 10 秒音频剪辑分成 10 个 1 秒音频剪辑,并从该 1 秒音频剪辑中获取频谱图
我正在 Tensorflow 中制作 LSTM 神经网络。 输入张量大小为 92。 import tensorflow as tf from tensorflow.contrib import rnn
我正在尝试 keras IMDB 数据的示例,数据形状是这样的: x_train shape: (25000, 80) 我只是把keras例子的原始代码改成了这样的代码: model = Sequen
我需要了解如何使用 torch.nn 的不同组件正确准备批量训练的输入。模块。具体来说,我希望为 seq2seq 模型创建一个编码器-解码器网络。 假设我有一个包含这三层的模块,按顺序: nn.Emb
我很难概念化 Keras 中有状态 LSTM 和无状态 LSTM 之间的区别。我的理解是,在每个批处理结束时,在无状态情况下“网络状态被重置”,而对于有状态情况,网络状态会为每个批处理保留,然后必须在
nn.Embedding() 是学习 LSTM 所必需的吗? 我在 PyTorch 中使用 LSTM 来预测 NER - 此处是类似任务的示例 - https://pytorch.org/tutori
我正在尝试找出适合我想要拟合的模型的正确语法。这是一个时间序列预测问题,我想在将时间序列输入 LSTM 之前使用一些密集层来改进时间序列的表示。 这是我正在使用的虚拟系列: import pandas
我在理解堆叠式 LSTM 网络中各层的输入-输出流时遇到了一些困难。假设我已经创建了一个如下所示的堆叠式 LSTM 网络: # parameters time_steps = 10 features
LSTM 类中的默认非线性激活函数是 tanh。我希望在我的项目中使用 ReLU。浏览文档和其他资源,我无法找到一种简单的方法来做到这一点。我能找到的唯一方法是定义我自己的自定义 LSTMCell,但
在 PyTorch 中,有一个 LSTM 模块,除了输入序列、隐藏状态和单元状态之外,它还接受 num_layers 参数,该参数指定我们的 LSTM 有多少层。 然而,还有另一个模块 LSTMCel
没什么好说的作为介绍:我想在 TensorFlow 中将 LSTM 堆叠在另一个 LSTM 上,但一直被错误阻止,我不太明白,更不用说单独解决了。 代码如下: def RNN(_X, _istate,
有人可以解释一下吗?我知道双向 LSTM 具有前向和反向传递,但是与单向 LSTM 相比,它有什么优势? 它们各自更适合什么? 最佳答案 LSTM 的核心是使用隐藏状态保留已经通过它的输入信息。 单向
我想构建一个带有特殊词嵌入的 LSTM,但我对它的工作原理有一些疑问。 您可能知道,一些 LSTM 对字符进行操作,因此它是字符输入,字符输出。我想做同样的事情,通过对单词的抽象来学习使用嵌套的 LS
我编写了一个LSTM回归模型。它是最后一个LSTM层的BATCH_SIZE=1和RETURN_Sequence=True的模型。我还设置了VERIFICATION_DATA和耐心进行培训。但似乎存在一
给定一个训练有素的 LSTM 模型,我想对单个时间步执行推理,即以下示例中的 seq_length = 1。在每个时间步之后,需要为下一个“批处理”记住内部 LSTM(内存和隐藏)状态。在推理的最开始
我是一名优秀的程序员,十分优秀!