gpt4 book ai didi

machine-learning - 检查输入 : expected embedding_1_input to have shape (4, 时出错,但得到形状为 (1,) 的数组

转载 作者:行者123 更新时间:2023-11-30 09:16:40 27 4
gpt4 key购买 nike

我为我的 keras 模型使用预训练的嵌入向量。在我这样做之前,一切正常,现在我收到此错误:

ValueError: Error when checking input: expected embedding_1_input to have shape (4,) but got array with shape (1,)

也许有人可以帮助我,我在这里做错了什么。我不确定我的 model.fit 和 model.evaluate 是否正确。也许有问题?

import csv
import numpy as np
np.random.seed(42)
from keras.models import Sequential, Model
from keras.layers import *
from random import shuffle
from sklearn.model_selection import train_test_split
from keras import optimizers
from keras.callbacks import EarlyStopping
from itertools import groupby
from numpy import asarray
from numpy import zeros
from numpy import array
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences

#function makes a list of antonyms and synonyms from the files
def preprocessing(filename):
list_words = []
with open(filename) as tsv:
for line in csv.reader(tsv, dialect="excel-tab"):
list_words.append([line[0], line[1]])
return list_words

#function make a list of not relevant pairs by mixing synonyms and
antonyms
def notrelevant(filename, filename2):
list_words = []
with open(filename) as tsv:
with open(filename2) as tsv2:
for lines in zip(csv.reader(tsv, dialect="excel-tab"),csv.reader(tsv2, dialect="excel-tab")):
list_words.append([lines[0][0], lines[1][1]])
return list_words

antonyms_list = preprocessing("antonyms.tsv")
synonyms_list = preprocessing("synonyms.tsv")
notrelevant_list = notrelevant("antonyms.tsv", "synonyms.tsv")

# function combines all antonyms, synonyms in one list with labels,
shuffle them
def data_prepare(ant,syn,nrel):
data = []
for elem1,elem2 in ant:
data.append([[elem1,elem2], "Antonyms"])
for elem1, elem2 in syn:
data.append([[elem1, elem2], "Synonyms"])
for elem1, elem2 in nrel:
data.append([[elem1, elem2], "Not relevant"])
shuffle(data)
return data


data_with_labels_shuffled =
data_prepare(antonyms_list,synonyms_list,notrelevant_list)

def label_to_onehot(labels):
mapping = {label: i for i, label in enumerate(set(labels))}

one_hot = np.empty((len(labels), 3))
for i, label in enumerate(labels):
entry = [0] * len(mapping)
entry[mapping[label]] = 1
one_hot[i] = entry
return (one_hot)

def words_to_ids(labels):
vocabulary = []
word_to_id = {}
ids = []
for word1,word2 in labels:
vocabulary.append(word1)
vocabulary.append(word2)
counter = 0
for word in vocabulary:
if word not in word_to_id:
word_to_id[word] = counter
counter += 1
for word1,word2 in labels:
ids.append([word_to_id [word1], word_to_id [word2]])
return (ids)

def split_data(datas):
data = np.array(datas)
X, y = data[:, 0], data[:, 1]
# split the data to get 60% train and 40% test
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=42)
y_train = label_to_onehot(y_train)
X_dev, X_test, y_dev, y_test = train_test_split(X_test, y_test, test_size=0.5, random_state=42)
y_dev = label_to_onehot(y_dev)
y_test = label_to_onehot(y_test)
return X_train, y_train, X_dev, y_dev, X_test, y_test

X_train, y_train, X_dev, y_dev, X_test, y_test = split_data(data_with_labels_shuffled)

# prepare tokenizer
t = Tokenizer()
t.fit_on_texts(X_train)
vocab_size = len(t.word_index) + 1
# integer encode the documents
encoded_docs = t.texts_to_sequences(X_train)


# load the whole embedding into memory
embeddings_index = dict()
f = open('glove.6B.50d.txt')
for line in f:
values = line.split()
word = values[0]
coefs = asarray(values[1:], dtype='float32')
embeddings_index[word] = coefs
f.close()
# create a weight matrix for words in training docs
embedding_matrix = zeros((vocab_size, 50))
for word, i in t.word_index.items():
embedding_vector = embeddings_index.get(word)
if embedding_vector is not None:
embedding_matrix[i] = embedding_vector



VOCABSIZE = len(data_with_labels_shuffled)
EMBSIZE = 50
HIDDENSIZE = 50
KERNELSIZE = 5
MAXEPOCHS = 5

model = Sequential()
model.add(Embedding(vocab_size, 50, weights=[embedding_matrix],
input_length=4, trainable=False))
model.add(Dropout(0.25))
model.add(Bidirectional(GRU(units = HIDDENSIZE // 2)))
#model.add(Flatten())
model.add(Dense(units = 3, activation = "softmax"))
model.compile(loss='categorical_crossentropy', optimizer="adam",
metrics=['accuracy'])


earlystop = EarlyStopping(monitor='val_loss', min_delta=0, patience=2, verbose=0, mode='min')
model.fit (X_train, y_train,
batch_size=64,
callbacks = [earlystop],
epochs=100,
validation_data=(X_dev, y_dev),
verbose=1)
scores = model.evaluate(X_test, y_testbatch_size=64)

print("Accuracy is: %.2f%%" %(scores[1] * 100))

最佳答案

我认为问题是您应该将encoded_docs传递给model.fit()函数而不是X_train,因为encoded_docs包含训练数据的标记,而X_train仍然只包含单词列表。此外,您必须确保嵌入层的 input_length 参数与您在encoded_docs 中创建的这些标记化训练示例的长度相匹配。

关于machine-learning - 检查输入 : expected embedding_1_input to have shape (4, 时出错,但得到形状为 (1,) 的数组,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/54332745/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com