- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
请注意:我为了这项任务而与 numpy 结婚。
我正在尝试编写一个函数来实现以下目标:
例如,如果我有 input=100 个样本(行)
,并且有两个类(由最后一列中的值表示),A 和 B,分别为 33% 和 67 % split,然后我应该创建 5 个折叠,每个折叠包含 20 个样本,其中 6 或 7 个样本是 A,13 或 14 个样本是 B。
这就是我正在努力实现的目标。我不知道如何正确确保 FOLD 本身包含类的正确采样分布。
我有以下代码来显示我迄今为止的尝试。到目前为止,我已经编写了两个函数,它们能够告诉我输入类的分布是什么,并且能够创建 5 个折叠。然而,我需要找到一种方法来组合这些并创建 5 个折叠来维持各自的分布。
import numpy
def csv_to_array(file):
# Open the file, and load it in delimiting on the ',' for a comma separated value file
data = open(file, 'r')
data = numpy.loadtxt(data, delimiter=',')
# Loop through the data in the array
for index in range(len(data)):
# Utilize a try catch to try and convert to float, if it can't convert to float, converts to 0
try:
data[index] = [float(x) for x in data[index]]
except Exception:
data[index] = 0
except ValueError:
data[index] = 0
# Return the now type-formatted data
return data
def class_distribution(dataset):
dataset = numpy.asarray(dataset)
num_total_rows = dataset.shape[0]
num_columns = dataset.shape[1]
classes = dataset[:,num_columns-1]
classes = numpy.unique(classes)
for aclass in classes:
total = 0
for row in dataset:
if numpy.array_equal(aclass, row[-1]):
total = total + 1
else:
continue
print(aclass, " Has: ", ((total/num_total_rows) * 100))
print(aclass, " : ", total)
def create_folds(dataset):
# print("DATASET", dataset)
numpy.random.shuffle(dataset)
num_rows = dataset.shape[0]
split_mark = int(num_rows / 5)
folds = []
fold_sets = []
temp1 = dataset[:split_mark]
# print("TEMP1", temp1)
temp2 = dataset[split_mark:split_mark*2]
# print("TEMP2", temp2)
temp3 = dataset[split_mark*2:split_mark*3]
# print("TEMP3", temp3)
temp4 = dataset[split_mark*3:split_mark*4]
# print("TEMP4", temp4)
temp5 = dataset[split_mark*4:]
# print("TEMP5", temp5)
folds.append(temp1)
folds.append(temp2)
folds.append(temp3)
folds.append(temp4)
folds.append(temp5)
folds = numpy.asarray(folds)
# print(folds)
return folds
def main():
print("BEGINNING CFV")
ecoli = csv_to_array('Classification/ecoli.csv')
# print(len(ecoli))
class_distribution(ecoli)
create_folds(ecoli)
main()
这是我正在使用的 csv 示例,最后一列表示类。它是 ecoli dataset 的修改来自 UCI 机器学习存储库:
0.61,0.45,0.48,0.5,0.48,0.35,0.41,0
0.17,0.38,0.48,0.5,0.45,0.42,0.5,0
0.44,0.35,0.48,0.5,0.55,0.55,0.61,0
0.43,0.4,0.48,0.5,0.39,0.28,0.39,0
0.42,0.35,0.48,0.5,0.58,0.15,0.27,0
0.23,0.33,0.48,0.5,0.43,0.33,0.43,0
0.37,0.52,0.48,0.5,0.42,0.42,0.36,0
0.29,0.3,0.48,0.5,0.45,0.03,0.17,0
0.22,0.36,0.48,0.5,0.35,0.39,0.47,0
0.23,0.58,0.48,0.5,0.37,0.53,0.59,0
0.47,0.47,0.48,0.5,0.22,0.16,0.26,0
0.54,0.47,0.48,0.5,0.28,0.33,0.42,0
0.51,0.37,0.48,0.5,0.35,0.36,0.45,0
0.4,0.35,0.48,0.5,0.45,0.33,0.42,0
0.44,0.34,0.48,0.5,0.3,0.33,0.43,0
0.44,0.49,0.48,0.5,0.39,0.38,0.4,0
0.43,0.32,0.48,0.5,0.33,0.45,0.52,0
0.49,0.43,0.48,0.5,0.49,0.3,0.4,0
0.47,0.28,0.48,0.5,0.56,0.2,0.25,0
0.32,0.33,0.48,0.5,0.6,0.06,0.2,0
0.34,0.35,0.48,0.5,0.51,0.49,0.56,0
0.35,0.34,0.48,0.5,0.46,0.3,0.27,0
0.38,0.3,0.48,0.5,0.43,0.29,0.39,0
0.38,0.44,0.48,0.5,0.43,0.2,0.31,0
0.41,0.51,0.48,0.5,0.58,0.2,0.31,0
0.34,0.42,0.48,0.5,0.41,0.34,0.43,0
0.51,0.49,0.48,0.5,0.53,0.14,0.26,0
0.25,0.51,0.48,0.5,0.37,0.42,0.5,0
0.29,0.28,0.48,0.5,0.5,0.42,0.5,0
0.25,0.26,0.48,0.5,0.39,0.32,0.42,0
0.24,0.41,0.48,0.5,0.49,0.23,0.34,0
0.17,0.39,0.48,0.5,0.53,0.3,0.39,0
0.04,0.31,0.48,0.5,0.41,0.29,0.39,0
0.61,0.36,0.48,0.5,0.49,0.35,0.44,0
0.34,0.51,0.48,0.5,0.44,0.37,0.46,0
0.28,0.33,0.48,0.5,0.45,0.22,0.33,0
0.4,0.46,0.48,0.5,0.42,0.35,0.44,0
0.23,0.34,0.48,0.5,0.43,0.26,0.37,0
0.37,0.44,0.48,0.5,0.42,0.39,0.47,0
0,0.38,0.48,0.5,0.42,0.48,0.55,0
0.39,0.31,0.48,0.5,0.38,0.34,0.43,0
0.3,0.44,0.48,0.5,0.49,0.22,0.33,0
0.27,0.3,0.48,0.5,0.71,0.28,0.39,0
0.17,0.52,0.48,0.5,0.49,0.37,0.46,0
0.36,0.42,0.48,0.5,0.53,0.32,0.41,0
0.3,0.37,0.48,0.5,0.43,0.18,0.3,0
0.26,0.4,0.48,0.5,0.36,0.26,0.37,0
0.4,0.41,0.48,0.5,0.55,0.22,0.33,0
0.22,0.34,0.48,0.5,0.42,0.29,0.39,0
0.44,0.35,0.48,0.5,0.44,0.52,0.59,0
0.27,0.42,0.48,0.5,0.37,0.38,0.43,0
0.16,0.43,0.48,0.5,0.54,0.27,0.37,0
0.06,0.61,0.48,0.5,0.49,0.92,0.37,1
0.44,0.52,0.48,0.5,0.43,0.47,0.54,1
0.63,0.47,0.48,0.5,0.51,0.82,0.84,1
0.23,0.48,0.48,0.5,0.59,0.88,0.89,1
0.34,0.49,0.48,0.5,0.58,0.85,0.8,1
0.43,0.4,0.48,0.5,0.58,0.75,0.78,1
0.46,0.61,0.48,0.5,0.48,0.86,0.87,1
0.27,0.35,0.48,0.5,0.51,0.77,0.79,1
0.52,0.39,0.48,0.5,0.65,0.71,0.73,1
0.29,0.47,0.48,0.5,0.71,0.65,0.69,1
0.55,0.47,0.48,0.5,0.57,0.78,0.8,1
0.12,0.67,0.48,0.5,0.74,0.58,0.63,1
0.4,0.5,0.48,0.5,0.65,0.82,0.84,1
0.73,0.36,0.48,0.5,0.53,0.91,0.92,1
0.84,0.44,0.48,0.5,0.48,0.71,0.74,1
0.48,0.45,0.48,0.5,0.6,0.78,0.8,1
0.54,0.49,0.48,0.5,0.4,0.87,0.88,1
0.48,0.41,0.48,0.5,0.51,0.9,0.88,1
0.5,0.66,0.48,0.5,0.31,0.92,0.92,1
0.72,0.46,0.48,0.5,0.51,0.66,0.7,1
0.47,0.55,0.48,0.5,0.58,0.71,0.75,1
0.33,0.56,0.48,0.5,0.33,0.78,0.8,1
0.64,0.58,0.48,0.5,0.48,0.78,0.73,1
0.11,0.5,0.48,0.5,0.58,0.72,0.68,1
0.31,0.36,0.48,0.5,0.58,0.94,0.94,1
0.68,0.51,0.48,0.5,0.71,0.75,0.78,1
0.69,0.39,0.48,0.5,0.57,0.76,0.79,1
0.52,0.54,0.48,0.5,0.62,0.76,0.79,1
0.46,0.59,0.48,0.5,0.36,0.76,0.23,1
0.36,0.45,0.48,0.5,0.38,0.79,0.17,1
0,0.51,0.48,0.5,0.35,0.67,0.44,1
0.1,0.49,0.48,0.5,0.41,0.67,0.21,1
0.3,0.51,0.48,0.5,0.42,0.61,0.34,1
0.61,0.47,0.48,0.5,0,0.8,0.32,1
0.63,0.75,0.48,0.5,0.64,0.73,0.66,1
0.71,0.52,0.48,0.5,0.64,1,0.99,1
0.72,0.42,0.48,0.5,0.65,0.77,0.79,2
0.79,0.41,0.48,0.5,0.66,0.81,0.83,2
0.83,0.48,0.48,0.5,0.65,0.76,0.79,2
0.69,0.43,0.48,0.5,0.59,0.74,0.77,2
0.79,0.36,0.48,0.5,0.46,0.82,0.7,2
0.78,0.33,0.48,0.5,0.57,0.77,0.79,2
0.75,0.37,0.48,0.5,0.64,0.7,0.74,2
0.59,0.29,0.48,0.5,0.64,0.75,0.77,2
0.67,0.37,0.48,0.5,0.54,0.64,0.68,2
0.66,0.48,0.48,0.5,0.54,0.7,0.74,2
0.64,0.46,0.48,0.5,0.48,0.73,0.76,2
0.76,0.71,0.48,0.5,0.5,0.71,0.75,2
0.84,0.49,0.48,0.5,0.55,0.78,0.74,2
0.77,0.55,0.48,0.5,0.51,0.78,0.74,2
0.81,0.44,0.48,0.5,0.42,0.67,0.68,2
0.58,0.6,0.48,0.5,0.59,0.73,0.76,2
0.63,0.42,0.48,0.5,0.48,0.77,0.8,2
0.62,0.42,0.48,0.5,0.58,0.79,0.81,2
0.86,0.39,0.48,0.5,0.59,0.89,0.9,2
0.81,0.53,0.48,0.5,0.57,0.87,0.88,2
0.87,0.49,0.48,0.5,0.61,0.76,0.79,2
0.47,0.46,0.48,0.5,0.62,0.74,0.77,2
0.76,0.41,0.48,0.5,0.5,0.59,0.62,2
0.7,0.53,0.48,0.5,0.7,0.86,0.87,2
0.64,0.45,0.48,0.5,0.67,0.61,0.66,2
0.81,0.52,0.48,0.5,0.57,0.78,0.8,2
0.73,0.26,0.48,0.5,0.57,0.75,0.78,2
0.49,0.61,1,0.5,0.56,0.71,0.74,2
0.88,0.42,0.48,0.5,0.52,0.73,0.75,2
0.84,0.54,0.48,0.5,0.75,0.92,0.7,2
0.63,0.51,0.48,0.5,0.64,0.72,0.76,2
0.86,0.55,0.48,0.5,0.63,0.81,0.83,2
0.79,0.54,0.48,0.5,0.5,0.66,0.68,2
0.57,0.38,0.48,0.5,0.06,0.49,0.33,2
0.78,0.44,0.48,0.5,0.45,0.73,0.68,2
0.78,0.68,0.48,0.5,0.83,0.4,0.29,3
0.63,0.69,0.48,0.5,0.65,0.41,0.28,3
0.67,0.88,0.48,0.5,0.73,0.5,0.25,3
0.61,0.75,0.48,0.5,0.51,0.33,0.33,3
0.67,0.84,0.48,0.5,0.74,0.54,0.37,3
0.74,0.9,0.48,0.5,0.57,0.53,0.29,3
0.73,0.84,0.48,0.5,0.86,0.58,0.29,3
0.75,0.76,0.48,0.5,0.83,0.57,0.3,3
0.77,0.57,0.48,0.5,0.88,0.53,0.2,3
0.74,0.78,0.48,0.5,0.75,0.54,0.15,3
0.68,0.76,0.48,0.5,0.84,0.45,0.27,3
0.56,0.68,0.48,0.5,0.77,0.36,0.45,3
0.65,0.51,0.48,0.5,0.66,0.54,0.33,3
0.52,0.81,0.48,0.5,0.72,0.38,0.38,3
0.64,0.57,0.48,0.5,0.7,0.33,0.26,3
0.6,0.76,1,0.5,0.77,0.59,0.52,3
0.69,0.59,0.48,0.5,0.77,0.39,0.21,3
0.63,0.49,0.48,0.5,0.79,0.45,0.28,3
0.71,0.71,0.48,0.5,0.68,0.43,0.36,3
0.68,0.63,0.48,0.5,0.73,0.4,0.3,3
0.74,0.49,0.48,0.5,0.42,0.54,0.36,4
0.7,0.61,0.48,0.5,0.56,0.52,0.43,4
0.66,0.86,0.48,0.5,0.34,0.41,0.36,4
0.73,0.78,0.48,0.5,0.58,0.51,0.31,4
0.65,0.57,0.48,0.5,0.47,0.47,0.51,4
0.72,0.86,0.48,0.5,0.17,0.55,0.21,4
0.67,0.7,0.48,0.5,0.46,0.45,0.33,4
0.67,0.81,0.48,0.5,0.54,0.49,0.23,4
0.67,0.61,0.48,0.5,0.51,0.37,0.38,4
0.63,1,0.48,0.5,0.35,0.51,0.49,4
0.57,0.59,0.48,0.5,0.39,0.47,0.33,4
0.71,0.71,0.48,0.5,0.4,0.54,0.39,4
0.66,0.74,0.48,0.5,0.31,0.38,0.43,4
0.67,0.81,0.48,0.5,0.25,0.42,0.25,4
0.64,0.72,0.48,0.5,0.49,0.42,0.19,4
0.68,0.82,0.48,0.5,0.38,0.65,0.56,4
0.32,0.39,0.48,0.5,0.53,0.28,0.38,4
0.7,0.64,0.48,0.5,0.47,0.51,0.47,4
0.63,0.57,0.48,0.5,0.49,0.7,0.2,4
0.69,0.65,0.48,0.5,0.63,0.48,0.41,4
0.43,0.59,0.48,0.5,0.52,0.49,0.56,4
0.74,0.56,0.48,0.5,0.47,0.68,0.3,4
0.71,0.57,0.48,0.5,0.48,0.35,0.32,4
0.61,0.6,0.48,0.5,0.44,0.39,0.38,4
0.59,0.61,0.48,0.5,0.42,0.42,0.37,4
0.74,0.74,0.48,0.5,0.31,0.53,0.52,4
最佳答案
在听取了@AlexL的建议后,我查看了StratifiedKFold代码并开发了具有以下两个功能的修改版本:
# This function returns the list of classes, and their associated weights (i.e. distributions)
def class_distribution(dataset):
dataset = numpy.asarray(dataset)
num_total_rows = dataset.shape[0]
num_columns = dataset.shape[1]
classes = dataset[:, num_columns - 1]
classes = numpy.unique(classes)
class_weights = []
# Loop through the classes one by one
for aclass in classes:
total = 0
weight = 0
for row in dataset:
if numpy.array_equal(aclass, row[-1]):
total = total + 1
else:
continue
weight = float((total / num_total_rows))
class_weights.append(weight)
class_weights = numpy.asarray(class_weights)
return classes, class_weights
# This functions performs k cross fold validation for classification
def cross_fold_validation_classification(dataset, k):
temp_dataset = numpy.asarray(dataset)
classes, class_weights = class_distribution(temp_dataset)
total_num_rows = temp_dataset.shape[0]
data = numpy.copy(temp_dataset)
total_fold_array = []
for _ in range(k):
curr_fold_array = []
# Loop through each class and its associated weight
for a_class, a_class_weight in zip(classes, class_weights):
numpy.random.shuffle(data)
num_added = 0
num_to_add = float((((a_class_weight * total_num_rows)) / k))
tot = 0
for row in data:
curr = row[-1]
if num_added >= num_to_add:
break
else:
if (a_class == curr):
curr_fold_array.append(row)
num_added = num_added + 1
numpy.delete(data, tot)
tot = tot + 1
total_fold_array.append(curr_fold_array)
return total_fold_array
关于python - 返回基于类的 numpy 数组的分布样本,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/55079153/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!