- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试使用神经网络模型来预测新数据。然而,预测数据的比例不正确(当它应该是 0.3 等时获得的值是 1e-10)。
在我的模型中,我在 x 和 y 数据上使用了 minmaxscaler。当使用测试列车分割方法时,该模型给出的 R2 值为 0.9,使用管道方法和交叉验证方法时,MSE 为 0.01%。所以我相信我创建的模型是好的。
这是我制作的模型。
data=pd.read_csv(r'''F:\DataforANNfromIESFebAugPowerValues.csv''')
data.dropna(axis=0,how='all')
x=data[['Dry-bulb_temperature_C','Wind_speed_m/s','Cloud_cover_oktas','External_relative_humidity_%','Starrag1250','StarragEcospeed2538','StarragS191','StarragLX051','DoosanCNC6700','MakinoG7','HermleC52MT','WFL_Millturn','Hofler1350','MoriNT4250','MoriNT5400','NMV8000','MoriNT6600','MoriNVL1350','HermleC42','CFV550','MoriDura635','DMGUltrasonic10']]
y=data[['Process_heat_output_waste_kW','Heating_plant_sensible_load_kW','Cooling_plant_sensible_load_kW','Relative_humidity_%','Air_temperature_C','Total_electricity_kW','Chillers_energy_kW','Boilers_energy_kW']]
epochs=150
learning_rate=0.001
decay_rate=learning_rate/epochs
optimiser=keras.optimizers.Nadam(lr=learning_rate, schedule_decay=decay_rate)
def create_model():
model=Sequential()
model.add(Dense(21, input_dim=22, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(19, activation='relu')) #hidden layer 2
model.add(Dropout(0.2))
model.add(Dense(8, activation='sigmoid')) #output layer
model.compile(loss='mean_squared_error', optimizer=optimiser,metrics=['accuracy','mse'])
return model
scaler=MinMaxScaler()
x=MinMaxScaler().fit_transform(x)
print(x)
y=MinMaxScaler().fit_transform(y)
model=KerasRegressor(build_fn=create_model, verbose=0,epochs=150, batch_size=70)
model.fit(x, y, epochs=150, batch_size=70)
##SET UP NEW DATA FOR PREDICTIONS
xnewdata=pd.read_csv(r'''F:\newdatapowervalues.csv''')
xnewdata.dropna(axis=0,how='all')
xnew=xnewdata[['Dry-bulb_temperature_C','Wind_speed_m/s','Cloud_cover_oktas','External_relative_humidity_%','Starrag1250','StarragEcospeed2538','StarragS191','StarragLX051','DoosanCNC6700','MakinoG7','HermleC52MT','WFL_Millturn','Hofler1350','MoriNT4250','MoriNT5400','NMV8000','MoriNT6600','MoriNVL1350','HermleC42','CFV550','MoriDura635','DMGUltrasonic10']]
xnew=MinMaxScaler().fit_transform(xnew)
ynew=model.predict(xnew)
ynewdata=pd.DataFrame(data=ynew)
ynewdata.to_csv(r'''F:\KerasIESPowerYPredict.csv''',header=['Process_heat_output_waste_kW','Heating_plant_sensible_load_kW','Cooling_plant_sensible_load_kW','Relative_humidity_%','Air_temperature_C','Total_electricity_kW','Chillers_energy_kW','Boilers_energy_kW'])
看到我在初始训练模型上使用了缩放器,我想我也需要对新数据执行此操作。我尝试过做 缩放器.inverse_transform(ynew)在 model.predict(ynew) 之后,我得到了 minmaxscaler 实例尚未适合 y 的错误。因此,我尝试使用管道方法。
estimators = []
estimators.append(('standardize', MinMaxScaler()))
estimators.append(('mlp', KerasRegressor(build_fn=create_model, epochs=150, batch_size=70, verbose=0)))
pipeline = Pipeline(estimators)
pipeline.fit(x,y)
用于初始训练模型而不是
x=MinMaxScaler().fit_transform(x)
y=MinMaxScaler().fit_transform(y)
model=KerasRegressor(build_fn=create_model, verbose=0,epochs=150, batch_size=70)
model.fit(x, y, epochs=150, batch_size=70)
然后我用了 ynew=管道.预测(xnew)然而这给了我主要由 1 组成的数据!
知道如何正确预测这些新数据吗?我不确定哪些数据要缩放,哪些数据不缩放,因为我相信使用 pipeline.predict 将包括 x 和 y 的缩放。因此,在做出这些预测后,我是否需要某种逆管道标量?非常感谢您的帮助。
最佳答案
您的方法存在一个小问题和一个主要问题。
(...)
scaler=MinMaxScaler()
x=scaler.fit_transform(x)
model=KerasRegressor(build_fn=create_model, verbose=0,epochs=150, batch_size=70)
model.fit(x, y, epochs=150, batch_size=70)
##SET UP NEW DATA FOR PREDICTIONS
xnewdata=pd.read_csv(r'''F:\newdatapowervalues.csv''')
xnewdata.dropna(axis=0,how='all')
xnew=xnewdata[['Dry-bulb_temperature_C','Wind_speed_m/s','Cloud_cover_oktas','External_relative_humidity_%','Starrag1250','StarragEcospeed2538','StarragS191','StarragLX051','DoosanCNC6700','MakinoG7','HermleC52MT','WFL_Millturn','Hofler1350','MoriNT4250','MoriNT5400','NMV8000','MoriNT6600','MoriNVL1350','HermleC42','CFV550','MoriDura635','DMGUltrasonic10']]
xnew=scaler.transform(xnew)
ynew=model.predict(xnew)
ynewdata=pd.DataFrame(data=ynew)
如您所见,我们首先使用缩放器
来学习正确的归一化因子,然后在运行的新数据上使用它(
。转换
) >预测
关于python - Keras 中预测数据的逆比例,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56596653/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!