- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我构建了一个 keras 逻辑回归模型。我正在尝试找到一种方法,可以为我的模型提供新的数据集,并在我通过的新数据集中进行预测。我的新数据集将与我的模型形状相同
我的第二个问题是有没有办法提高我的模型的准确性,因为我的准确率是 69%,当我打印分类报告时,我在一个类别中得到了不好的精度
X=new.drop('reassed',axis=1)
y=new['reassed'].astype(int)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
# Initialising the ANN
classifier = Sequential()
# Adding the input layer and the first hidden layer
classifier.add(Dense(units = 27, kernel_initializer = 'uniform', activation = 'relu', input_dim = 6))
# Adding the second hidden layer
classifier.add(Dense(units = 27, kernel_initializer = 'uniform', activation = 'relu'))
# Adding the output layer
classifier.add(Dense(units = 1, kernel_initializer = 'uniform', activation = 'sigmoid'))
# Compiling the ANN
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])`enter code here`
# Fitting the ANN to the Training set
classifier.fit(X_train, y_train, batch_size = 10, epochs = 20)
Epoch 1/20
16704/16704 [==============================] - 1s 76us/step - loss: 0.6159 - acc: 0.6959
Epoch 2/20
16704/16704 [==============================] - 1s 65us/step - loss: 0.6114 - acc: 0.6967
Epoch 3/20
16704/16704 [==============================] - 1s 65us/step - loss: 0.6110 - acc: 0.6964
Epoch 4/20
16704/16704 [==============================] - 1s 66us/step - loss: 0.6101 - acc: 0.6965
Epoch 5/20
16704/16704 [==============================] - 1s 66us/step - loss: 0.6091 - acc: 0.6961
Epoch 6/20
16704/16704 [==============================] - 1s 66us/step - loss: 0.6094 - acc: 0.6963
Epoch 7/20
16704/16704 [==============================] - 1s 68us/step - loss: 0.6086 - acc: 0.6967
Epoch 8/20
16704/16704 [==============================] - 1s 66us/step - loss: 0.6083 - acc: 0.6965
Epoch 9/20
16704/16704 [==============================] - 1s 65us/step - loss: 0.6081 - acc: 0.6964: 0s - loss: 0.6085 - acc:
Epoch 10/20
16704/16704 [==============================] - 1s 66us/step - loss: 0.6082 - acc: 0.6971
Epoch 11/20
16704/16704 [==============================] - 1s 67us/step - loss: 0.6077 - acc: 0.6968
Epoch 12/20
16704/16704 [==============================] - 1s 66us/step - loss: 0.6073 - acc: 0.6971
Epoch 13/20
16704/16704 [==============================] - 1s 65us/step - loss: 0.6067 - acc: 0.6971
Epoch 14/20
16704/16704 [==============================] - 1s 66us/step - loss: 0.6070 - acc: 0.6965
Epoch 15/20
16704/16704 [==============================] - 1s 65us/step - loss: 0.6066 - acc: 0.6967: 0s - loss: 0.6053 - ac
Epoch 16/20
16704/16704 [==============================] - 1s 66us/step - loss: 0.6060 - acc: 0.6967
Epoch 17/20
16704/16704 [==============================] - 1s 67us/step - loss: 0.6061 - acc: 0.6968
Epoch 18/20
16704/16704 [==============================] - 1s 67us/step - loss: 0.6062 - acc: 0.6971
Epoch 19/20
16704/16704 [==============================] - 1s 69us/step - loss: 0.6057 - acc: 0.6968
Epoch 20/20
16704/16704 [==============================] - 1s 74us/step - loss: 0.6055 - acc: 0.6973
y_pred = classifier.predict(X_test)
y_pred = [ 1 if y>=0.5 else 0 for y in y_pred ]
print(classification_report(y_test, y_pred))
precision recall f1-score support
0 0.71 1.00 0.83 2968
1 0.33 0.00 0.01 1208
micro avg 0.71 0.71 0.71 4176
macro avg 0.52 0.50 0.42 4176
weighted avg 0.60 0.71 0.59 4176
我希望改进我的模型
我希望找到一种可以在新数据集中进行预测的方法
最佳答案
对新数据集进行预测
使用
模型.预测(X)
用于进行预测并进行后期处理的函数。
这与使用测试集进行预测几乎相同。
关于python - 在新数据集中进行预测,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/57251280/
我正在使用 R 预测包拟合模型,如下所示: fit <- auto.arima(df) plot(forecast(fit,h=200)) 打印原始数据框和预测。当 df 相当大时,这
我正在尝试预测自有住房的中位数,这是一个行之有效的例子,给出了很好的结果。 https://heuristically.wordpress.com/2011/11/17/using-neural-ne
type="class"函数中的type="response"和predict有什么区别? 例如: predict(modelName, newdata=testData, type = "class
我有一个名为 Downloaded 的文件夹,其中包含经过训练的 CNN 模型必须对其进行预测的图像。 下面是导入图片的代码: import os images = [] for filename i
关于预测的快速问题。 我尝试预测的值是 0 或 1(它设置为数字,而不是因子),因此当我运行随机森林时: fit , data=trainData, ntree=50) 并预测: pred, data
使用 Python,我尝试使用历史销售数据来预测产品的 future 销售数量。我还试图预测各组产品的这些计数。 例如,我的专栏如下所示: Date Sales_count Department It
我是 R 新手,所以请帮助我了解问题所在。我试图预测一些数据,但预测函数返回的对象(这是奇怪的类(因子))包含低数据。测试集大小为 5886 obs。 160 个变量,当预测对象长度为 110 时..
关闭。这个问题需要更多focused .它目前不接受答案。 想改进这个问题吗? 更新问题,使其只关注一个问题 editing this post . 关闭 6 年前。 Improve this qu
下面是我的神经网络代码,有 3 个输入和 1 个隐藏层和 1 个输出: #Data ds = SupervisedDataSet(3,1) myfile = open('my_file.csv','r
我正在开发一个 Web 应用程序,它具有全文搜索功能,可以正常运行。我想对此进行改进并向其添加预测/更正功能,这意味着如果用户输入错误或结果为 0,则会查询该输入的更正版本,而不是查询结果。基本上类似
我对时间序列还很陌生。 这是我正在处理的数据集: Date Price Location 0 2012-01-01 1771.0
我有许多可变长度的序列。对于这些,我想训练一个隐马尔可夫模型,稍后我想用它来预测(部分)序列的可能延续。到目前为止,我已经找到了两种使用 HMM 预测 future 的方法: 1) 幻觉延续并获得该延
我正在使用 TensorFlow 服务提供初始模型。我在 Azure Kubernetes 上这样做,所以不是通过更标准和有据可查的谷歌云。 无论如何,这一切都在起作用,但是我感到困惑的是预测作为浮点
我正在尝试使用 Amazon Forecast 进行一些测试。我现在尝试了两个不同的数据集,它们看起来像这样: 13,2013-03-31 19:25:00,93.10999 14,2013-03-3
使用 numpy ndarray大多数时候我们不需要担心内存布局的问题,因为结果并不依赖于它。 除非他们这样做。例如,考虑这种设置 3x2 矩阵对角线的稍微过度设计的方法 >>> a = np.zer
我想在同一个地 block 上用不同颜色绘制多个预测,但是,比例尺不对。我对任何其他方法持开放态度。 可重现的例子: require(forecast) # MAKING DATA data
我正在 R 中使用 GLMM,其中混合了连续变量和 calcategories 变量,并具有一些交互作用。我使用 MuMIn 中的 dredge 和 model.avg 函数来获取每个变量的效果估计。
我能够在 GUI 中成功导出分类器错误,但无法在命令行中执行此操作。有什么办法可以在命令行上完成此操作吗? 我使用的是 Weka 3.6.x。在这里,您可以右键单击模型,选择“可视化分类器错误”并从那
我想在同一个地 block 上用不同颜色绘制多个预测,但是,比例尺不对。我对任何其他方法持开放态度。 可重现的例子: require(forecast) # MAKING DATA data
我从 UCI 机器学习数据集库下载了一个巨大的文件。 (~300mb)。 有没有办法在将数据集加载到 R 内存之前预测加载数据集所需的内存? Google 搜索了很多,但我到处都能找到如何使用 R-p
我是一名优秀的程序员,十分优秀!