- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我从Github上得到了这段代码,它是一个开源青光眼检测机器学习算法,使用卷积网络将视网膜图像分类为是/否青光眼:
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Model
from keras.layers import Input, Conv2D, MaxPooling2D, GlobalAveragePooling2D
from keras.layers import BatchNormalization, Activation, Dropout, Flatten, Dense
from keras import backend as K
from keras import optimizers
from keras.callbacks import ModelCheckpoint, ReduceLROnPlateau
from imgaug import augmenters as iaa
img_width, img_height = 256, 256
input_shape = (img_width, img_height, 3)
train_data_dir = "data/train"
validation_data_dir = "data/validation"
nb_train_samples = <training samples>
nb_validation_samples = <validation samples>
batch_size = 16
epochs = 100
input = Input(shape=input_shape)
block1 = BatchNormalization(name='norm_0')(input)
# Block 1
block1 = Conv2D(8, (3,3), name='conv_11', activation='relu')(block1)
block1 = Conv2D(16, (3,3), name='conv_12', activation='relu')(block1)
block1 = Conv2D(32, (3,3), name='conv_13', activation='relu')(block1)
block1 = Conv2D(64, (3,3), name='conv_14', activation='relu')(block1)
block1 = MaxPooling2D(pool_size=(2, 2))(block1)
block1 = BatchNormalization(name='norm_1')(block1)
block1 = Conv2D(16, 1)(block1)
# Block 2
block2 = Conv2D(32, (3,3), name='conv_21', activation='relu')(block1)
block2 = Conv2D(64, (3,3), name='conv_22', activation='relu')(block2)
block2 = Conv2D(64, (3,3), name='conv_23', activation='relu')(block2)
block2 = Conv2D(128, (3,3), name='conv_24', activation='relu')(block2)
block2 = MaxPooling2D(pool_size=(2, 2))(block2)
block2 = BatchNormalization(name='norm_2')(block2)
block2 = Conv2D(64, 1)(block2)
# Block 3
block3 = Conv2D(64, (3,3), name='conv_31', activation='relu')(block2)
block3 = Conv2D(128, (3,3), name='conv_32', activation='relu')(block3)
block3 = Conv2D(128, (3,3), name='conv_33', activation='relu')(block3)
block3 = Conv2D(64, (3,3), name='conv_34', activation='relu')(block3)
block3 = MaxPooling2D(pool_size=(2, 2))(block3)
block3 = BatchNormalization(name='norm_3')(block3)
# Block 4
block4 = Conv2D(64, (3,3), name='conv_41', activation='relu')(block3)
block4 = Conv2D(32, (3,3), name='conv_42', activation='relu')(block4)
block4 = Conv2D(16, (3,3), name='conv_43', activation='relu')(block4)
block4 = Conv2D(8, (2,2), name='conv_44', activation='relu')(block4)
block4 = MaxPooling2D(pool_size=(2, 2))(block4)
block4 = BatchNormalization(name='norm_4')(block4)
block4 = Conv2D(2, 1)(block4)
block5 = GlobalAveragePooling2D()(block4)
output = Activation('softmax')(block5)
model = Model(inputs=[input], outputs=[output])
model.summary()
model.compile(loss="categorical_crossentropy", optimizer=optimizers.Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False), metrics=["accuracy"])
# Initiate the train and test generators with data Augumentation
sometimes = lambda aug: iaa.Sometimes(0.6, aug)
seq = iaa.Sequential([
iaa.GaussianBlur(sigma=(0 , 1.0)),
iaa.Sharpen(alpha=1, lightness=0),
iaa.CoarseDropout(p=0.1, size_percent=0.15),
sometimes(iaa.Affine(
scale={"x": (0.8, 1.2), "y": (0.8, 1.2)},
translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)},
rotate=(-30, 30),
shear=(-16, 16)))
])
train_datagen = ImageDataGenerator(
rescale=1./255,
preprocessing_function=seq.augment_image,
horizontal_flip=True,
vertical_flip=True)
test_datagen = ImageDataGenerator(
rescale=1./255,
horizontal_flip=True,
vertical_flip=True)
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode="categorical")
validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_height, img_width),
class_mode="categorical")
checkpoint = ModelCheckpoint("f1.h5", monitor='acc', verbose=1, save_best_only=True, save_weights_only=False, mode='auto', period=1)
reduce_lr = ReduceLROnPlateau(monitor='loss', factor=0.1, patience=2, verbose=0, mode='auto', cooldown=0, min_lr=0)
model.fit_generator(
train_generator,
steps_per_epoch=nb_train_samples // batch_size,
epochs=epochs,
validation_data=validation_generator,
validation_steps=nb_validation_samples // batch_size,
callbacks=[checkpoint, reduce_lr]
)
除了我不断收到此错误:
File "CNN.py", line 15
nb_train_samples = <training samples>
^
SyntaxError: invalid syntax
我应该替换什么<training samples>
和<validation samples>
为了不出现此错误?除此之外,其余代码都有效。
谢谢大家,萨蒂亚
最佳答案
我不确定如何用代码来填充它,但我可以知道训练和验证样本是什么。
训练样本是用于训练模型的数据。模型学习为特定样本提供一些输出。但我们并不是真的想教模型仅识别样本,而是希望识别“模式”
这就是我们使用验证数据的原因。确保模型不仅适用于用于学习的样本,而且也适用于“尚未见过”的样本。
您的脚本似乎需要每个样本具有 (256,256,3) 的结构,但负责加载该数据的代码尚未丢失。
关于python - <训练样本> 和 <验证样本> 是什么意思?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/59095959/
我正在处理不平衡的面板数据,我想从中抽取一个随机样本,该样本不受每个单位不同观察次数的影响。例如,在下面的代码中,IBM 被选中的可能性是 GOOG 的两倍,被选中的可能性是 MSFT 的五倍。有没有
有人可以指出实现 CollectionChanged 的示例。我正在使用 wpf mvvm 灯。我试图谷歌,没有找到任何足够好的东西。 最佳答案 public ObservableCollecti
我有 df我想对某些变量的分布进行一些抽样。比方说 df['type'].value_counts(normalize=True)返回: 0.3 A 0.5 B 0.2 C 我想做类似 sampled
我仍然无法理解样本/像素/片段之间有什么区别。 由于片段着色器按像素执行,我认为片段只是指一个像素,这是正确的吗?谁能给我一个例子和每个人的定义? 最佳答案 片段着色器按片段执行并发出像素。它们非常相
我正在尝试理解这个名为“The Amazing Audio Engine”的 GitHub 项目,它简化了在 iOS 上处理音频的过程。 我从麦克风捕捉并使用这种方法: id receiver = [
如何在诺基亚 Qt SDK(用于手机)中使用 QTableView。我引用了一些文档,但我仍然不清楚 QTableView。请任何人建议如何使用 QTableView。 我想显示具有三列的 QTabl
我已经能够获取 JmDNS 附带的示例来编译和运行,但是我无法获取任何类来发现我的服务。 我正在运行一个 Windows 环境,多台 PC 运行 VNC、SSH 和 Apache,我一直在尝试让 Jm
问题的具体实例 我的整数范围是 1-100。我想生成此范围内的 n 个总数,这些数字尽可能均匀分布并包括第一个和最后一个值。 示例 start = 1, end = 100, n = 5 Outp
我在线程组中有几个带有脚本的 JSR 223 采样器,它们在执行在调用 HTTP 请求之前进行一些工作。 问题在于 JSR 233 采样器包含在最终摘要报告中 我的问题是如何从最终计算中排除那些 JS
我需要有关存储后端歌曲预览的好方法的建议(现在正在查看iTunes,也许还有spotify和soundcloud)。我的想法是,我需要预下载并可能缓存30秒及更少的音频文件,以方便召回。 然后,我需要
我刚刚从 Github 下载了 Atmosphere 样本。当我在聊天样本上运行 jetty:run goal 时,我遇到了一些问题。 我可以使用浏览器访问该页面(http://localhost:9
我有一个包含五个项目的向量。 my_vec 有更换,当我需要时没有更换。最有效的方法是什么? 请注意,在我的向量中,我有两次值“a” - 因此,在返回的打乱向量集中,它们都应该有两次“a”。 最佳答案
我正在尝试学习如何阅读规范。让我们看看尝试压缩后会得到什么:1) 一个空缓冲区和 2) 一个感叹号: >>> zlib.compress(b'', 0) b'x\x01\x01\x00\x00\xff
我是 cuda 的新手,几周前才开始阅读有关并行编程和 cuda 的内容。在我安装了 cuda 工具包之后,我正在浏览 sdk 示例(安装工具包时附带的)并想尝试其中的一些。我从 0_Simple 文
我正在使用 FsCheck 生成自定义数据的 Gen . 假设你有一个函数返回 Gen : let chooseRectangle widthMax heightMax offset = gen
我有一个包含大约 800 万个观察值的数据框。我需要从中提取样本,但想从多个列中采样。 我尝试了以下方法,但不起作用: import pandas as pd state = ['mi', 'mi',
我学习安卓图形,我遇到了一个奇怪的问题: 我发现很多提到“FingerPaint”样本的地方,但我在样本文件夹中找不到它。 只有 47 个示例项目,没有一个是关于图形的。 如何下载此示例?我按照这
假设我有一个 pandas 数据框 rid category 0 0 c2 1 1 c3 2 2 c2 3 3 c3 4 4
我想用 Pandas sample功能,但具有不分组或过滤数据的标准。 import pandas as pd import numpy as np df = pd.DataFrame(np.rand
我正在尝试从 MNIST 数据集中绘制 10 个样本。每个数字之一。这是代码: import sklearn import pandas as pd import matplotlib.pyplot
我是一名优秀的程序员,十分优秀!