gpt4 book ai didi

apache-spark - Spark MLlib LDA : the possible reasons behind generating always very similar LDA topics?

转载 作者:行者123 更新时间:2023-11-30 09:12:06 25 4
gpt4 key购买 nike

我正在将 MLlib LDA example 应用于从 enter link description here 下载的各种语料库我正在过滤掉停用词,并排除非常频繁的术语和非常罕见的术语。问题是我总是有一些具有非常相似特征的主题。

这是我获得的主题示例,通过在维基百科 (eng_wikipedia_2010_300K-sentences) 的 300K 英语句子语料库上运行算法,知道我在使用其他语料库时也有类似的行为:

TOPIC 0
dai 0.0020492776129338083
call 0.0019627409470977355
citi 0.0019496273507300062
three 0.0019172201890256511
gener 0.0018325842193426059
plai 0.0018287121439402873
peopl 0.001786839660855886
well 0.0017792000702589461
system 0.0017410979899730565
area 0.001721711978388363
power 0.0016906026954800833
forc 0.0016646631729486227
number 0.0016343386030518979
1 0.0016238591786476033
team 0.0016112030952801443
second 0.0015692071709961662
develop 0.0015670177558504078
group 0.0015378927495689552
unit 0.001535180513974118
nation 0.001520548489788889

TOPIC 1
dai 0.002027230927747474
call 0.0019861147606781222
citi 0.0019793753441068825
three 0.0019315799215582723
gener 0.0018482143436741026
plai 0.0018088629290540156
peopl 0.0017929339168126625
well 0.0017549252518608278
system 0.0016936542725510587
power 0.0016792684719108006
area 0.0016604962232717288
forc 0.0016575624332970456
1 0.0016344588453542676
number 0.0016147026427518426
team 0.0015914797457267642
develop 0.001580085843019015
unit 0.0015659585445574969
nation 0.0015412334667742672
second 0.0015292625574896467
group 0.0015111594105132022

TOPIC 2
dai 0.002028407701986021
call 0.001987655848237808
citi 0.0019737160296217846
three 0.0019183385421321895
plai 0.0018470661666555599
gener 0.0018431319454591765
peopl 0.0017947273975068192
well 0.00174922095206974
area 0.0017256327188664123
system 0.0016995971624202812
forc 0.001690002995539528
power 0.0016779250581379353
1 0.0016214669556130525
team 0.0016134935452659781
number 0.00161273946842774
develop 0.0015712560226793318
unit 0.0015385515465297065
second 0.001537016434433013
nation 0.001529578699246495
group 0.0015259003261706866

TOPIC 3
dai 0.0020271063080981745
call 0.001973996689805456
citi 0.0019709486233839084
three 0.0019445106630149387
gener 0.0018677792917783514
plai 0.0018485914586526906
peopl 0.0018082458859327093
well 0.0017955363877379456
area 0.0017455386898734308
system 0.0017118889300776724
power 0.0017085249825238942
forc 0.0016416026632813164
1 0.001625823945554925
team 0.0015984923365964885
number 0.001584888932954503
develop 0.0015753517064182336
unit 0.0015587234313666533
second 0.0015545107852806973
nation 0.001551230039407881
form 0.0015004750009120491

TOPIC 4
dai 0.0020367505428973216
citi 0.0019778590305849857
call 0.0019772546555550576
three 0.001909390366412786
peopl 0.001822249318126459
gener 0.0018136257455996375
plai 0.0018128359158538045
well 0.0017692106359278286
system 0.0017220797688845334
area 0.0017158874212548339
power 0.0016752592665713634
forc 0.0016481228833262157
1 0.0016364343814157618
develop 0.0016172188646470641
team 0.0016018835612051036
number 0.0015991873726231036
group 0.0015593423279207062
second 0.0015532604092917898
unit 0.001549525336335323
2 0.0015220460130066676

TOPIC 5
dai 0.0020635883517150367
call 0.0019664003159491844
citi 0.001961190935833301
three 0.001945998746077669
plai 0.0018498883070569758
peopl 0.0018146602342867515
gener 0.0018135991027718233
well 0.0017837359414291816
area 0.0017440315427199456
system 0.0016954828503859868
power 0.001684533695977363
forc 0.001669704443002364
number 0.00161528564937031
1 0.001615272821378791
team 0.0016121988960501902
unit 0.0015895009183487473
develop 0.001577936587739003
group 0.0015555325586313624
nation 0.0015404874848355308
second 0.0015394146696500102

TOPIC 6
dai 0.0020136284206896792
call 0.001992567179072041
citi 0.0019601308797825385
three 0.0019185595159400765
plai 0.0018409472012516875
gener 0.001829303983728153
peopl 0.0017780620849170163
well 0.001771180582253062
system 0.0017377818879564248
area 0.0016871361621009276
power 0.0016862650658960986
forc 0.00167141172198367
1 0.001629498191900329
number 0.0015977527836457993
develop 0.0015960475085336815
team 0.001571055963470908
unit 0.0015559866004530513
group 0.0015445653607137958
second 0.0015346412996486915
2 0.001533194322154979

TOPIC 7
dai 0.0020097600649219504
citi 0.001996121452902739
call 0.001976365831615543
three 0.0019444233325152307
gener 0.0018347697960641011
plai 0.0018294437097569366
peopl 0.001809068711352435
well 0.0017851474017785431
system 0.0017266117477556496
power 0.001696861186965475
area 0.0016963032173278431
forc 0.0016424242914518095
team 0.0016341651077031543
number 0.0016257268377783236
1 0.0016221579346215153
develop 0.0015930555191603342
unit 0.0015895942206181324
group 0.0015703868353222673
second 0.001515454552733173
2 0.0015143190174102155

TOPIC 8
dai 0.002044683052793855
call 0.001992448963405555
citi 0.00195425798896221
three 0.0018970773269210957
plai 0.001853887836159108
gener 0.0018252502592182695
peopl 0.0018160312050590462
well 0.0017935933754513543
system 0.0017479534729456555
area 0.0017288815955179666
power 0.0017029539375086361
forc 0.0016706673237865313
1 0.0016681586343593317
number 0.0016501255143390717
team 0.0015894156993455188
develop 0.0015724268907364824
unit 0.0015371351757786232
second 0.0015247527824288484
nation 0.0015235190916716697
group 0.0015194534324480095

TOPIC 9
dai 0.0020620160901430877
citi 0.001987856719658478
call 0.001973103036828604
three 0.001924295805136688
peopl 0.0018232321289066767
plai 0.0018172215529843724
gener 0.0018125979152302458
well 0.0018056742813131674
system 0.001725860669839185
area 0.0017232894719674296
power 0.001697643253119442
1 0.001640662972775316
forc 0.0016394197000681693
number 0.0015927389128238725
unit 0.0015785177165666606
team 0.0015751611459412492
develop 0.0015670613914512046
nation 0.0015287394547847542
2 0.0015262474392790497
group 0.0015196717933709822

TOPIC 10
dai 0.0020203137546454856
citi 0.001985814822156114
call 0.001974265937728284
three 0.001934180185122672
gener 0.0018803136198652043
plai 0.0018164056544889878
peopl 0.0018083393449413536
well 0.0017804569091358126
power 0.0017051544274740097
area 0.0016959804754901494
system 0.0016918620528211653
1 0.0016435864049172597
forc 0.0016413861291761263
number 0.001638383798987439
develop 0.0016053710214565596
team 0.0015754232749060797
unit 0.001543834810440448
group 0.0015352472722856185
nation 0.0015350540825884074
2 0.001500158078774582

最佳答案

为什么要删除常用词?把它们留在里面。当给定大量特征时,LDA 并不总是能很好地工作。许多已发表的结果将 LDA 限制为前 20k 个最常见的英语单词(无停用词)。我猜这就是你现在的很多问题。

还可能存在其他问题,您运行算法是否收敛? 10 个主题是否太小而无法获得合理的主题?你提供的信息太少了。

转到原始的在线 LDA 论文,首先尝试复制其结果,以确认您正确使用该库,然后在掌握窍门后调整到新的语料库。

关于apache-spark - Spark MLlib LDA : the possible reasons behind generating always very similar LDA topics?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/32743077/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com