gpt4 book ai didi

python - scikit-learn 中岭回归的系数路径

转载 作者:行者123 更新时间:2023-11-30 09:10:01 27 4
gpt4 key购买 nike

从 pandas DataFrame 开始,d_train(774 行):

enter image description here

这个想法是遵循示例 here研究岭系数路径。

在该示例中,以下是变量类型:

X, y, w = make_regression(n_samples=10, n_features=10, coef=True,
random_state=1, bias=3.5)
print X.shape, type(X), y.shape, type(y), w.shape, type(w)

>> (10, 10) <type 'numpy.ndarray'> (10,) <type 'numpy.ndarray'> (10,) <type'numpy.ndarray'>

为了避免 this stackoverflow discussion 中提到的问题,我将所有内容都转换为 numpy 数组:

predictors = ['p1', 'p2', 'p3', 'p4']
target = ['target_bins']
X = d_train[predictors].as_matrix()
### X = np.transpose(d_train[predictors].as_matrix())
y = d_train['target_bins'].as_matrix()
w = numpy.full((774,), 3, dtype=float)
print X.shape, type(X), y.shape, type(y), w.shape, type(w)
>> (774, 4) <type 'numpy.ndarray'> y_shape: (774,) <type 'numpy.ndarray'> w_shape: (774,) <type 'numpy.ndarray'>

然后我就跑了(a) 示例中的确切代码,(b) 将参数 fit_intercept = True, normalize = True 添加到 ridge 调用中(我的数据未缩放)得到相同的错误消息:

my_ridge = Ridge()
coefs = []
errors = []
alphas = np.logspace(-6, 6, 200)

for a in alphas:
my_ridge.set_params(alpha=a, fit_intercept = True, normalize = True)
my_ridge.fit(X, y)
coefs.append(my_ridge.coef_)
errors.append(mean_squared_error(my_ridge.coef_, w))
>> ValueError: Found input variables with inconsistent numbers of samples: [4, 774]

正如代码的注释部分所示,我也尝试了“相同”的代码,但使用了转置的 X 矩阵。在创建 X 矩阵 之前,我还尝试了缩放数据。收到相同的错误消息。

最后,我使用“RidgeClassifier”做了同​​样的事情,并设法得到不同的错误消息。

>> Found input variables with inconsistent numbers of samples: [1, 774]

问题:我不知道这里发生了什么 - 你能帮忙吗?

在 Canopy 1.7.4.3348(64 位)上使用 python 2.7 以及 scikit-learn 18.01-3 和 pandas 0.19.2-2

谢谢。

最佳答案

您需要拥有与特征数量一样多的权重w(因为您为每个特征学习一个权重),但在您的代码中,权重向量的维度为 774(即训练数据集中的行数),这就是它不起作用的原因。将代码修改为以下内容(改为使用 4 个权重),一切都会正常工作:

w = np.full((4,), 3, dtype=float) # number of features = 4, namely p1, p2, p3, p4
print X.shape, type(X), y.shape, type(y), w.shape, type(w)
#(774L, 4L) <type 'numpy.ndarray'> (774L,) <type 'numpy.ndarray'> (4L,) <type 'numpy.ndarray'>

现在您可以运行 http://scikit-learn.org/stable/auto_examples/linear_model/plot_ridge_coeffs.html#sphx-glr-auto-examples-linear-model-plot-ridge-coeffs-py 中的其余代码通过网格搜索查看权重和误差如何随正则化参数 alpha 变化,并获得以下数字

enter image description here

关于python - scikit-learn 中岭回归的系数路径,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/42031681/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com