- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我编写了用于线性回归的 tensorflow 程序。我正在使用梯度下降算法来优化(最小化)损失函数。但损失函数的值在程序执行过程中不断增加。我的程序和输出如下。
import tensorflow as tf
W = tf.Variable([.3],dtype=tf.float32)
b = tf.Variable([-.3],dtype=tf.float32)
X = tf.placeholder(tf.float32)
Y = tf.placeholder(tf.float32)
sess = tf.Session()
init = init = tf.global_variables_initializer()
sess.run(init)
lm = W*X + b
delta = tf.square(lm-Y)
loss = tf.reduce_sum(delta)
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)
for i in range(8):
print(sess.run([W, b]))
print("loss= %f" %sess.run(loss,{X:[10,20,30,40],Y:[1,2,3,4]}))
sess.run(train, {X: [10,20,30,40],Y: [1,2,3,4]})
sess.close()
我的程序的输出是
2017-12-07 14:50:10.517685: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
[array([ 0.30000001], dtype=float32), array([-0.30000001],dtype=float32)]
loss= 108.359993
[array([-11.09999943], dtype=float32), array([-0.676], dtype=float32)]
loss= 377836.000000
[array([ 662.25195312], dtype=float32), array([ 21.77807617], dtype=float32)]
loss= 1318221568.000000
[array([-39110.421875], dtype=float32), array([-1304.26794434], dtype=float32)]
loss= 4599107289088.000000
[array([ 2310129.25], dtype=float32), array([ 77021.109375], dtype=float32)]
loss= 16045701465112576.000000
[array([ -1.36451664e+08], dtype=float32), array([-4549399.], dtype=float32)]
loss= 55981405829796462592.000000
[array([ 8.05974733e+09], dtype=float32), array([ 2.68717856e+08], dtype=float32)]
loss= 195312036582209632600064.000000
请告诉我为什么损失值(value)增加而不是减少。
最佳答案
你尝试过改变学习率吗?使用较低的运行速率(~1e-4)和更多的迭代应该可行。
更多关于为什么可能需要较低学习率的理由。请注意,您的损失函数是
L =\sum (Wx+b-Y)^2
并且 dL/dW =\sum 2(Wx+b-Y)*x
和粗麻布 d^2L/d^2W =\sum 2x*x
现在,你的损失正在发散,因为学习率大于粗麻布的倒数,大约为 1/(2*2900)。所以你应该尝试降低这里的学习率。
注意:我不确定如何将数学添加到 StackOverflow 答案中,因此我必须以这种方式添加它。
关于python - tensorflow - 线性回归,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/47692054/
我想将模型及其各自训练的权重从 tensorflow.js 转换为标准 tensorflow,但无法弄清楚如何做到这一点,tensorflow.js 的文档对此没有任何说明 我有一个 manifest
我有一个运行良好的 TF 模型,它是用 Python 和 TFlearn 构建的。有没有办法在另一个系统上运行这个模型而不安装 Tensorflow?它已经经过预训练,所以我只需要通过它运行数据。 我
当执行 tensorflow_model_server 二进制文件时,它需要一个模型名称命令行参数,model_name。 如何在训练期间指定模型名称,以便在运行 tensorflow_model_s
我一直在 R 中使用标准包进行生存分析。我知道如何在 TensorFlow 中处理分类问题,例如逻辑回归,但我很难将其映射到生存分析问题。在某种程度上,您有两个输出向量而不是一个输出向量(time_t
Torch7 has a library for generating Gaussian Kernels在一个固定的支持。 Tensorflow 中有什么可比的吗?我看到 these distribu
在Keras中我们可以简单的添加回调,如下所示: self.model.fit(X_train,y_train,callbacks=[Custom_callback]) 回调在doc中定义,但我找不到
我正在寻找一种在 tensorflow 中有条件打印节点的方法,使用下面的示例代码行,其中每 10 个循环计数,它应该在控制台中打印一些东西。但这对我不起作用。谁能建议? 谢谢,哈米德雷萨, epsi
我想使用 tensorflow object detection API 创建我自己的 .tfrecord 文件,并将它们用于训练。该记录将是原始数据集的子集,因此模型将仅检测特定类别。我不明白也无法
我在 TensorFlow 中训练了一个聊天机器人,想保存模型以便使用 TensorFlow.js 将其部署到 Web。我有以下内容 checkpoint = "./chatbot_weights.c
我最近开始学习 Tensorflow,特别是我想使用卷积神经网络进行图像分类。我一直在看官方仓库中的android demo,特别是这个例子:https://github.com/tensorflow
我目前正在研究单图像超分辨率,并且我设法卡住了现有的检查点文件并将其转换为 tensorflow lite。但是,使用 .tflite 文件执行推理时,对一张图像进行上采样所需的时间至少是使用 .ck
我注意到 tensorflow 的 api 中已经有批量标准化函数。我不明白的一件事是如何更改训练和测试之间的程序? 批量归一化在测试和训练期间的作用不同。具体来说,在训练期间使用固定的均值和方差。
我创建了一个模型,该模型将 Mobilenet V2 应用于 Google colab 中的卷积基础层。然后我使用这个命令转换它: path_to_h5 = working_dir + '/Tenso
代码取自:- http://adventuresinmachinelearning.com/python-tensorflow-tutorial/ import tensorflow as tf fr
好了,所以我准备在Tensorflow中运行 tf.nn.softmax_cross_entropy_with_logits() 函数。 据我了解,“logit”应该是概率的张量,每个对应于某个像素的
tensorflow 服务构建依赖于大型 tensorflow ;但我已经成功构建了 tensorflow。所以我想用它。我做这些事情:我更改了 tensorflow 服务 WORKSPACE(org
Tensoflow 嵌入层 ( https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding ) 易于使用, 并且有大量的文
我正在尝试使用非常大的数据集(比我的内存大得多)训练 Tensorflow 模型。 为了充分利用所有可用的训练数据,我正在考虑将它们分成几个小的“分片”,并一次在一个分片上进行训练。 经过一番研究,我
根据 Sutton 的书 - Reinforcement Learning: An Introduction,网络权重的更新方程为: 其中 et 是资格轨迹。 这类似于带有额外 et 的梯度下降更新。
如何根据条件选择执行图表的一部分? 我的网络有一部分只有在 feed_dict 中提供占位符值时才会执行.如果未提供该值,则采用备用路径。我该如何使用 tensorflow 来实现它? 以下是我的代码
我是一名优秀的程序员,十分优秀!