- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
您好,我在 Anaconda 提示符中执行以下命令:(tensorflow) C:\Users\nicho\Documents\01_Machine_Learning\00_Lynda.com\Ex_Files_TensorFlow\models\research\object_detection > python train.py --logtostderr --train_dir=training/--pipeline_config_path=training/ssd_mobilenet_v1_pets.config
我正在使用我创建的标记“列”对象的自定义数据集来训练模型。我一遍又一遍地遵循教程以确保我的所有步骤都是正确的,但我似乎仍然遇到以下错误,非常感谢任何有关如何修复的线索?:
WARNING:tensorflow:From C:\Users\nicho\Documents\01_Machine_Learning\00_Lynda.com\Ex_Files_TensorFlow\models\research\object_detection\trainer.py:210: create_global_step (from tensorflow.contrib.framework.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Please switch to tf.train.create_global_step
INFO:tensorflow:depth of additional conv before box predictor: 0
INFO:tensorflow:depth of additional conv before box predictor: 0
INFO:tensorflow:depth of additional conv before box predictor: 0
INFO:tensorflow:depth of additional conv before box predictor: 0
INFO:tensorflow:depth of additional conv before box predictor: 0
INFO:tensorflow:depth of additional conv before box predictor: 0
Traceback (most recent call last):
File "train.py", line 163, in <module>
tf.app.run()
File "C:\Users\nicho\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\platform\app.py", line 124, in run
_sys.exit(main(argv))
File "train.py", line 159, in main
worker_job_name, is_chief, FLAGS.train_dir)
File "C:\Users\nicho\Documents\01_Machine_Learning\00_Lynda.com\Ex_Files_TensorFlow\models\research\object_detection\trainer.py", line 228, in train
clones = model_deploy.create_clones(deploy_config, model_fn, [input_queue])
File "C:\Users\nicho\Documents\01_Machine_Learning\00_Lynda.com\Ex_Files_TensorFlow\models\research\slim\deployment\model_deploy.py", line 193, in create_clones
outputs = model_fn(*args, **kwargs)
File "C:\Users\nicho\Documents\01_Machine_Learning\00_Lynda.com\Ex_Files_TensorFlow\models\research\object_detection\trainer.py", line 167, in _create_losses
losses_dict = detection_model.loss(prediction_dict)
File "C:\Users\nicho\Documents\01_Machine_Learning\00_Lynda.com\Ex_Files_TensorFlow\models\research\object_detection\meta_architectures\ssd_meta_arch.py", line 474, in loss
location_losses, cls_losses, prediction_dict, match_list)
File "C:\Users\nicho\Documents\01_Machine_Learning\00_Lynda.com\Ex_Files_TensorFlow\models\research\object_detection\meta_architectures\ssd_meta_arch.py", line 640, in _apply_hard_mining
match_list=match_list)
File "C:\Users\nicho\Documents\01_Machine_Learning\00_Lynda.com\Ex_Files_TensorFlow\models\research\object_detection\core\losses.py", line 515, in __call__
location_losses = tf.unstack(location_losses)
File "C:\Users\nicho\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\ops\array_ops.py", line 1054, in unstack
(axis, -value_shape.ndims, value_shape.ndims))
ValueError: axis = 0 not in [0, 0)
(tensorflow) C:\Users\nicho\Documents\01_Machine_Learning\00_Lynda.com\Ex_Files_TensorFlow\models\research\object_detection>python train.py --logtostderr --train_dir=training/ --pipeline_config_path=training/ssd_mobilenet_v1_pets.confi
克
最佳答案
问题已解决。在你的 pipeline.config 中制作
loss {
classification_loss {
weighted_sigmoid {
}
}
localization_loss {
weighted_smooth_l1 {
}
}
hard_example_miner {
num_hard_examples: 3000
iou_threshold: 0.99
loss_type: CLASSIFICATION
max_negatives_per_positive: 3
min_negatives_per_image: 0
}
classification_weight: 1.0
localization_weight: 1.0
}
至
loss {
classification_loss {
weighted_sigmoid {
anchorwise_output: true #add this
}
}
localization_loss {
weighted_smooth_l1 {
anchorwise_output: true #add this
}
}
hard_example_miner {
num_hard_examples: 3000
iou_threshold: 0.99
loss_type: CLASSIFICATION
max_negatives_per_positive: 3
min_negatives_per_image: 0
}
classification_weight: 1.0
localization_weight: 1.0
}
享受...
关于python - TensorFlow 对象检测 API 训练错误,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48847365/
我想将模型及其各自训练的权重从 tensorflow.js 转换为标准 tensorflow,但无法弄清楚如何做到这一点,tensorflow.js 的文档对此没有任何说明 我有一个 manifest
我有一个运行良好的 TF 模型,它是用 Python 和 TFlearn 构建的。有没有办法在另一个系统上运行这个模型而不安装 Tensorflow?它已经经过预训练,所以我只需要通过它运行数据。 我
当执行 tensorflow_model_server 二进制文件时,它需要一个模型名称命令行参数,model_name。 如何在训练期间指定模型名称,以便在运行 tensorflow_model_s
我一直在 R 中使用标准包进行生存分析。我知道如何在 TensorFlow 中处理分类问题,例如逻辑回归,但我很难将其映射到生存分析问题。在某种程度上,您有两个输出向量而不是一个输出向量(time_t
Torch7 has a library for generating Gaussian Kernels在一个固定的支持。 Tensorflow 中有什么可比的吗?我看到 these distribu
在Keras中我们可以简单的添加回调,如下所示: self.model.fit(X_train,y_train,callbacks=[Custom_callback]) 回调在doc中定义,但我找不到
我正在寻找一种在 tensorflow 中有条件打印节点的方法,使用下面的示例代码行,其中每 10 个循环计数,它应该在控制台中打印一些东西。但这对我不起作用。谁能建议? 谢谢,哈米德雷萨, epsi
我想使用 tensorflow object detection API 创建我自己的 .tfrecord 文件,并将它们用于训练。该记录将是原始数据集的子集,因此模型将仅检测特定类别。我不明白也无法
我在 TensorFlow 中训练了一个聊天机器人,想保存模型以便使用 TensorFlow.js 将其部署到 Web。我有以下内容 checkpoint = "./chatbot_weights.c
我最近开始学习 Tensorflow,特别是我想使用卷积神经网络进行图像分类。我一直在看官方仓库中的android demo,特别是这个例子:https://github.com/tensorflow
我目前正在研究单图像超分辨率,并且我设法卡住了现有的检查点文件并将其转换为 tensorflow lite。但是,使用 .tflite 文件执行推理时,对一张图像进行上采样所需的时间至少是使用 .ck
我注意到 tensorflow 的 api 中已经有批量标准化函数。我不明白的一件事是如何更改训练和测试之间的程序? 批量归一化在测试和训练期间的作用不同。具体来说,在训练期间使用固定的均值和方差。
我创建了一个模型,该模型将 Mobilenet V2 应用于 Google colab 中的卷积基础层。然后我使用这个命令转换它: path_to_h5 = working_dir + '/Tenso
代码取自:- http://adventuresinmachinelearning.com/python-tensorflow-tutorial/ import tensorflow as tf fr
好了,所以我准备在Tensorflow中运行 tf.nn.softmax_cross_entropy_with_logits() 函数。 据我了解,“logit”应该是概率的张量,每个对应于某个像素的
tensorflow 服务构建依赖于大型 tensorflow ;但我已经成功构建了 tensorflow。所以我想用它。我做这些事情:我更改了 tensorflow 服务 WORKSPACE(org
Tensoflow 嵌入层 ( https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding ) 易于使用, 并且有大量的文
我正在尝试使用非常大的数据集(比我的内存大得多)训练 Tensorflow 模型。 为了充分利用所有可用的训练数据,我正在考虑将它们分成几个小的“分片”,并一次在一个分片上进行训练。 经过一番研究,我
根据 Sutton 的书 - Reinforcement Learning: An Introduction,网络权重的更新方程为: 其中 et 是资格轨迹。 这类似于带有额外 et 的梯度下降更新。
如何根据条件选择执行图表的一部分? 我的网络有一部分只有在 feed_dict 中提供占位符值时才会执行.如果未提供该值,则采用备用路径。我该如何使用 tensorflow 来实现它? 以下是我的代码
我是一名优秀的程序员,十分优秀!