- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我想使用以下数据集运行简单的 MLP 分类器 (Scikit learn)。
数据集由 100 个文件组成,包含声音信号。每个文件都有两列(两个信号)和行(信号长度)。行(信号)的长度因文件而异,范围在 70 到 80 个值之间。因此文件的尺寸为70 x 2 到80 x 2。每个文件代表一条完整的记录。
我面临的问题是如何训练具有可变长度数据的简单 MLP,训练集和测试集分别包含 75 个和 25 个文件。
一种解决方案是连接所有文件并制作一个文件,即 7500 x 2 并训练 MLP。但信号的重要信息在这种情况下不再有用。
最佳答案
三种方法(按有用性排序)。强烈推荐方法 1。
第一种方法 - LSTM/GRU
您不使用简单 MLP。您正在处理的数据类型是顺序数据。为此目的创建了循环网络(LSTM/GRU)。它们能够处理可变长度的序列。
第二种方法 - 嵌入
找到一个可以将数据转换为固定长度序列的函数,称为嵌入。网络生成时间序列嵌入的一个示例是 TimeNet 。然而,这本质上让我们回到了第一种方法。
第三种方法 - 填充
如果您可以找到序列长度的合理上限,则可以将较短的序列填充到最长序列的长度(在序列的开头/结尾处填充 0,插入/预测剩余值),或者将较长的系列切成最短系列的长度。显然,您将分别引入噪声或丢失信息。
关于python - 如何输入具有可变长度输入数据的 Scikit learn MLP 分类器。,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/50216691/
我想使用简单的 MLP 模型进行迁移学习。首先,我在大数据上训练 1 个隐藏层前馈网络: net = Sequential() net.add(Dense(500, input_dim=2048, k
最近我正在使用 Tensorflow。我正在探索如何在 Tensorflow 中实现多层感知器。 我在网上学习了很多教程。他们中的大多数使用一两个隐藏层。一个简单的例子取自 here def forw
我对机器学习非常陌生,正在尝试实现 MLP,但是成本函数似乎在达到全局最小值之前就达到了局部最小值。我将成本绘制为迭代函数(包括 0 值,以免被 y 轴的起始位置所迷惑)。 这是我尝试使用的代码: i
以下是我的 MLP 模型, layers = [10,20,30,40,50] model = keras.models.Sequential() #Stacking Layers model.add
我是机器学习的新手,我正在开发一个 python 应用程序,该应用程序使用数据集对扑克牌进行分类,我将发布片段。似乎效果不太好。它无法正确对手进行分类。我收到以下错误 ", line 298, in
我有这样的数据 有 29 列,我必须预测其中的 winPlacePerc(数据帧的最末端)在 1 之间(高百分比)到 0(低百分比) 在 29 列中,25 是数字 数据 3 是 ID(对象) 1 是
您好,我正在尝试修改 mnist 示例以使其与我的数据集相匹配。我只尝试使用 mlp 示例,但它给出了一个奇怪的错误。 数据集是一个有 2100 行和 17 列的矩阵,输出应该是 16 个可能的类别之
我在 Dlib 中创建了一个多层感知器网络: mlp::kernel_1a_c net(2,5); 输入层有 2 个节点,第一个隐藏层有 5 个节点。该网络是否已经包含偏置节点?还是必须自己添加? 最
我正在 matlab 中制作一个具有反向传播的 MLP 神经网络。问题是,它似乎无法很好地处理函数中的曲线,也无法很好地与值进行缩放。例如,它可以达到 cos(x) 的 80%,但如果我输入 100*
我是 OpenCV 世界和神经网络的新手,但我有一些 C++/Java 编码经验。 我创建了我的第一个 ANN MLP 并学习了 XOR: #include #include #include
给定输入特征,仅原始数字: tensor([0.2153, 0.2190, 0.0685, 0.2127, 0.2145, 0.1260, 0.1480, 0.1483, 0.1489,
我正在尝试使用简单的时间序列预测。给定数量的输入(1 分钟滴答) Net 应该尝试预测下一个。我用不同的设置训练了 3 个网络来说明我的问题: 在右侧,您可以看到 3 个训练器 MLP - 随机命名和
我正在运行 MLP 将一组值分为 10 个不同的类别。 简单来说,我有一个声纳,它可以提供 400 个物体的“读数”。每个读数都是 1000 个浮点值的列表。 我已扫描了总共 100 个对象,想要对它
我正在创建一个简单的神经网络,其中有一个隐藏层用于分类。 我的输入数据集已准备好并保存在 .t7 文件中。 input = { data : DoubleTensor - size: 1400x1
我设置了以下参数: parameter_space = { 'hidden_layer_sizes': [(sp_randint.rvs(100,600,1),sp_randint.rvs(1
我正在使用机器学习制作一个国际象棋引擎,但在调试它时遇到了问题。我需要帮助找出我的程序出了什么问题,如果有任何帮助,我将不胜感激。 我进行了研究,并从多个成功的项目中借鉴了想法。这个想法是使用强化学习
我正在学习机器学习,我看到一些 Material 表明MLP(多层感知器)可能会陷入局部最小值。我想通过做一些实验来学习,但我在网上搜索了具体的例子,但找不到任何例子。谁能告诉我在哪里可以找到可以由我
我(有点像初学者)在时间序列数据应用程序上尝试使用 Keras,我创建了一个回归模型,然后将其保存以在不同的 Python 脚本上运行。 我正在处理的时间序列数据是每小时数据,我使用 Keras 中保
我尝试使用 keras(支持 tensorflow )创建一个神经网络。我有 4 个输入变量和 2 个输出变量:不可用 我想对不可用的测试集进行预测。 这是我的代码: from keras impor
我使用 theano 编写了一个 MLP 分类器。使用反向传播算法的训练函数如下: self.weights=[theano.shared(numpy.random.random((network.a
我是一名优秀的程序员,十分优秀!