gpt4 book ai didi

tensorflow - 恢复训练卷积神经网络

转载 作者:行者123 更新时间:2023-11-30 09:06:01 25 4
gpt4 key购买 nike

我有一个模型,已经训练了 75 个周期。我使用 model.save() 保存了模型。训练代码为

from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential, load_model
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras import backend as K

# dimensions of our images.
img_width, img_height = 320, 240

train_data_dir = 'dataset/Training_set'
validation_data_dir = 'dataset/Test_set'
nb_train_samples = 4000 #total
nb_validation_samples = 1000 # total
epochs = 25
batch_size = 10

if K.image_data_format() == 'channels_first':
input_shape = (3, img_width, img_height)
else:
input_shape = (img_width, img_height, 3)

model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=input_shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('sigmoid'))

model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])

# this is the augmentation configuration we will use for training
train_datagen = ImageDataGenerator(
rescale=1. / 255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)

# this is the augmentation configuration we will use for testing:
# only rescaling
test_datagen = ImageDataGenerator(rescale=1. / 255)

train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary')

validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary')

model.fit_generator(
train_generator,
steps_per_epoch=nb_train_samples // batch_size,
epochs=epochs,
validation_data=validation_generator,
validation_steps=5)

model.save('model1.h5')

如何重新开始训练?我只需再次运行此代码吗?或者我需要做出改变吗?这些改变是什么?

我读了那篇文章并试图理解一些。我在这里读到了这个:Loading a trained Keras model and continue training

最佳答案

您只需使用

加载模型即可
from keras.models import load_model
model = load_model('model1.h5')

关于tensorflow - 恢复训练卷积神经网络,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/51721589/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com