- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
下图描述了应用 CNN 单个中间过滤层的最大池化层之前的输出。我想存储强度为 4 的像素的坐标(位于箭头左侧矩阵的右下角),因为它位于箭头左侧的矩阵中。也就是说,右侧矩阵中坐标 (4,4)(基于 1 的索引)处的像素是存储在右侧箭头右侧矩阵右下单元格中的像素。现在我要做的就是存储这个坐标值 (4,4) 以及其他像素的坐标 {(2,2) 表示强度为 6 的像素,(2, 4) 表示强度为像素8 和 (3, 1) 对于强度为 3} 的像素作为列表供以后处理。我如何在 Tensorflow 中做到这一点。
最大池化使用尺寸为 2 x 2 且步长为 2 的过滤器完成
最佳答案
您可以使用tf.nn.max_pool_with_argmax
(link)。注意:
The indices in argmax are flattened, so that a maximum value at position [b, y, x, c] becomes flattened index ((b * height + y) * width + x) * channels + c.
我们需要进行一些处理以使其适合您的坐标。一个例子:
import tensorflow as tf
import numpy as np
def max_pool_with_argmax(net,filter_h,filter_w,stride):
output, mask = tf.nn.max_pool_with_argmax( net,ksize=[1, filter_h, filter_w, 1],
strides=[1, stride, stride, 1],padding='SAME')
# If your ksize looks like [1, stride, stride, 1]
loc_x = mask // net.shape[2]
loc_y = mask % net.shape[2]
loc = tf.concat([loc_x+1,loc_y+1],axis=-1) #count from 0 so add 1
# If your ksize is all changing, use the following
# c = tf.mod(mask,net.shape[3])
# remain = tf.cast(tf.divide(tf.subtract(mask,c),net.shape[3]),tf.int64)
# x = tf.mod(remain,net.shape[2])
# remain = tf.cast(tf.divide(tf.subtract(remain,x),net.shape[2]),tf.int64)
# y = tf.mod(remain,net.shape[1])
# remain = tf.cast(tf.divide(tf.subtract(remain, y), net.shape[1]),tf.int64)
# b = tf.mod(remain, net.shape[0])
# loc = tf.concat([y+1,x+1], axis=-1)
return output,loc
input = tf.Variable(np.random.rand(1, 6, 4, 1), dtype=np.float32)
output, mask = max_pool_with_argmax(input,2,2,2)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
input_value,output_value,mask_value = sess.run([input,output,mask])
print(input_value[0,:,:,0])
print(output_value[0,:,:,0])
print(mask_value[0,:,:,:])
#print
[[0.20101677 0.09207255 0.32177696 0.34424785]
[0.4116488 0.5965447 0.20575707 0.63288754]
[0.3145412 0.16090539 0.59698933 0.709239 ]
[0.00252096 0.18027237 0.11163216 0.40613824]
[0.4027637 0.1995668 0.7462126 0.68812144]
[0.8993007 0.55828506 0.5263306 0.09376772]]
[[0.5965447 0.63288754]
[0.3145412 0.709239 ]
[0.8993007 0.7462126 ]]
[[[2 2]
[2 4]]
[[3 1]
[3 4]]
[[6 1]
[5 3]]]
您可以看到强度为 0.5965447 的像素为 (2,2),强度为 0.63288754 的像素为 (2, 4),依此类推。
关于tensorflow - 如何将中间卷积层的结果存储在 tensorflow 中以供以后处理?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/53903559/
我想将模型及其各自训练的权重从 tensorflow.js 转换为标准 tensorflow,但无法弄清楚如何做到这一点,tensorflow.js 的文档对此没有任何说明 我有一个 manifest
我有一个运行良好的 TF 模型,它是用 Python 和 TFlearn 构建的。有没有办法在另一个系统上运行这个模型而不安装 Tensorflow?它已经经过预训练,所以我只需要通过它运行数据。 我
当执行 tensorflow_model_server 二进制文件时,它需要一个模型名称命令行参数,model_name。 如何在训练期间指定模型名称,以便在运行 tensorflow_model_s
我一直在 R 中使用标准包进行生存分析。我知道如何在 TensorFlow 中处理分类问题,例如逻辑回归,但我很难将其映射到生存分析问题。在某种程度上,您有两个输出向量而不是一个输出向量(time_t
Torch7 has a library for generating Gaussian Kernels在一个固定的支持。 Tensorflow 中有什么可比的吗?我看到 these distribu
在Keras中我们可以简单的添加回调,如下所示: self.model.fit(X_train,y_train,callbacks=[Custom_callback]) 回调在doc中定义,但我找不到
我正在寻找一种在 tensorflow 中有条件打印节点的方法,使用下面的示例代码行,其中每 10 个循环计数,它应该在控制台中打印一些东西。但这对我不起作用。谁能建议? 谢谢,哈米德雷萨, epsi
我想使用 tensorflow object detection API 创建我自己的 .tfrecord 文件,并将它们用于训练。该记录将是原始数据集的子集,因此模型将仅检测特定类别。我不明白也无法
我在 TensorFlow 中训练了一个聊天机器人,想保存模型以便使用 TensorFlow.js 将其部署到 Web。我有以下内容 checkpoint = "./chatbot_weights.c
我最近开始学习 Tensorflow,特别是我想使用卷积神经网络进行图像分类。我一直在看官方仓库中的android demo,特别是这个例子:https://github.com/tensorflow
我目前正在研究单图像超分辨率,并且我设法卡住了现有的检查点文件并将其转换为 tensorflow lite。但是,使用 .tflite 文件执行推理时,对一张图像进行上采样所需的时间至少是使用 .ck
我注意到 tensorflow 的 api 中已经有批量标准化函数。我不明白的一件事是如何更改训练和测试之间的程序? 批量归一化在测试和训练期间的作用不同。具体来说,在训练期间使用固定的均值和方差。
我创建了一个模型,该模型将 Mobilenet V2 应用于 Google colab 中的卷积基础层。然后我使用这个命令转换它: path_to_h5 = working_dir + '/Tenso
代码取自:- http://adventuresinmachinelearning.com/python-tensorflow-tutorial/ import tensorflow as tf fr
好了,所以我准备在Tensorflow中运行 tf.nn.softmax_cross_entropy_with_logits() 函数。 据我了解,“logit”应该是概率的张量,每个对应于某个像素的
tensorflow 服务构建依赖于大型 tensorflow ;但我已经成功构建了 tensorflow。所以我想用它。我做这些事情:我更改了 tensorflow 服务 WORKSPACE(org
Tensoflow 嵌入层 ( https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding ) 易于使用, 并且有大量的文
我正在尝试使用非常大的数据集(比我的内存大得多)训练 Tensorflow 模型。 为了充分利用所有可用的训练数据,我正在考虑将它们分成几个小的“分片”,并一次在一个分片上进行训练。 经过一番研究,我
根据 Sutton 的书 - Reinforcement Learning: An Introduction,网络权重的更新方程为: 其中 et 是资格轨迹。 这类似于带有额外 et 的梯度下降更新。
如何根据条件选择执行图表的一部分? 我的网络有一部分只有在 feed_dict 中提供占位符值时才会执行.如果未提供该值,则采用备用路径。我该如何使用 tensorflow 来实现它? 以下是我的代码
我是一名优秀的程序员,十分优秀!