- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
# Deep Convolutional GANs
# Importing the libraries
from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim as optim
import torch.utils.data
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils as vutils
from torch.autograd import Variable
# Setting some hyperparameters
batchSize = 64 # We set the size of the batch.
imageSize = 64 # We set the size of the generated images (64x64).
# Creating the transformations
transform = transforms.Compose([transforms.Scale(imageSize), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),]) # We create a list of transformations (scaling, tensor conversion, normalization) to apply to the input images.
# Loading the dataset
dataset = dset.CIFAR10(root = './data', download = True, transform = transform) # We download the training set in the ./data folder and we apply the previous transformations on each image.
dataloader = torch.utils.data.DataLoader(dataset, batch_size = batchSize, shuffle = True, num_workers = 2) # We use dataLoader to get the images of the training set batch by batch.
# Defining the weights_init function that takes as input a neural network m and that will initialize all its weights.
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
m.weight.data.normal_(0.0, 0.02)
elif classname.find('BatchNorm') != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
# Defining the generator
class G(nn.Module): # We introduce a class to define the generator.
def __init__(self): # We introduce the __init__() function that will define the architecture of the generator.
super(G, self).__init__() # We inherit from the nn.Module tools.
self.main = nn.Sequential( # We create a meta module of a neural network that will contain a sequence of modules (convolutions, full connections, etc.).
nn.ConvTranspose2d(100, 512, 4, 1, 0, bias = False), # We start with an inversed convolution.
nn.BatchNorm2d(512), # We normalize all the features along the dimension of the batch.
nn.ReLU(True), # We apply a ReLU rectification to break the linearity.
nn.ConvTranspose2d(512, 256, 4, 2, 1, bias = False), # We add another inversed convolution.
nn.BatchNorm2d(256), # We normalize again.
nn.ReLU(True), # We apply another ReLU.
nn.ConvTranspose2d(256, 128, 4, 2, 1, bias = False), # We add another inversed convolution.
nn.BatchNorm2d(128), # We normalize again.
nn.ReLU(True), # We apply another ReLU.
nn.ConvTranspose2d(128, 64, 4, 2, 1, bias = False), # We add another inversed convolution.
nn.BatchNorm2d(64), # We normalize again.
nn.ReLU(True), # We apply another ReLU.
nn.ConvTranspose2d(64, 3, 4, 2, 1, bias = False), # We add another inversed convolution.
nn.Tanh() # We apply a Tanh rectification to break the linearity and stay between -1 and +1.
)
def forward(self, input): # We define the forward function that takes as argument an input that will be fed to the neural network, and that will return the output containing the generated images.
output = self.main(input) # We forward propagate the signal through the whole neural network of the generator defined by self.main.
return output # We return the output containing the generated images.
# Creating the generator
netG = G() # We create the generator object.
netG.apply(weights_init) # We initialize all the weights of its neural network.
# Defining the discriminator
class D(nn.Module): # We introduce a class to define the discriminator.
def __init__(self): # We introduce the __init__() function that will define the architecture of the discriminator.
super(D, self).__init__() # We inherit from the nn.Module tools.
self.main = nn.Sequential( # We create a meta module of a neural network that will contain a sequence of modules (convolutions, full connections, etc.).
nn.Conv2d(3, 64, 4, 2, 1, bias = False), # We start with a convolution.
nn.LeakyReLU(0.2, inplace = True), # We apply a LeakyReLU.
nn.Conv2d(64, 128, 4, 2, 1, bias = False), # We add another convolution.
nn.BatchNorm2d(128), # We normalize all the features along the dimension of the batch.
nn.LeakyReLU(0.2, inplace = True), # We apply another LeakyReLU.
nn.Conv2d(128, 256, 4, 2, 1, bias = False), # We add another convolution.
nn.BatchNorm2d(256), # We normalize again.
nn.LeakyReLU(0.2, inplace = True), # We apply another LeakyReLU.
nn.Conv2d(256, 512, 4, 2, 1, bias = False), # We add another convolution.
nn.BatchNorm2d(512), # We normalize again.
nn.LeakyReLU(0.2, inplace = True), # We apply another LeakyReLU.
nn.Conv2d(512, 1, 4, 1, 0, bias = False), # We add another convolution.
nn.Sigmoid() # We apply a Sigmoid rectification to break the linearity and stay between 0 and 1.
)
def forward(self, input): # We define the forward function that takes as argument an input that will be fed to the neural network, and that will return the output which will be a value between 0 and 1.
output = self.main(input) # We forward propagate the signal through the whole neural network of the discriminator defined by self.main.
return output.view(-1) # We return the output which will be a value between 0 and 1.
# Creating the discriminator
netD = D() # We create the discriminator object.
netD.apply(weights_init) # We initialize all the weights of its neural network.
# Training the DCGANs
criterion = nn.BCELoss() # We create a criterion object that will measure the error between the prediction and the target.
optimizerD = optim.Adam(netD.parameters(), lr = 0.0002, betas = (0.5, 0.999)) # We create the optimizer object of the discriminator.
optimizerG = optim.Adam(netG.parameters(), lr = 0.0002, betas = (0.5, 0.999)) # We create the optimizer object of the generator.
for epoch in range(25): # We iterate over 25 epochs.
for i, data in enumerate(dataloader, 0): # We iterate over the images of the dataset.
# 1st Step: Updating the weights of the neural network of the discriminator
netD.zero_grad() # We initialize to 0 the gradients of the discriminator with respect to the weights.
# Training the discriminator with a real image of the dataset
real, _ = data # We get a real image of the dataset which will be used to train the discriminator.
input = Variable(real) # We wrap it in a variable.
target = Variable(torch.ones(input.size()[0])) # We get the target.
output = netD(input) # We forward propagate this real image into the neural network of the discriminator to get the prediction (a value between 0 and 1).
errD_real = criterion(output, target) # We compute the loss between the predictions (output) and the target (equal to 1).
# Training the discriminator with a fake image generated by the generator
noise = Variable(torch.randn(input.size()[0], 100, 1, 1)) # We make a random input vector (noise) of the generator.
fake = netG(noise) # We forward propagate this random input vector into the neural network of the generator to get some fake generated images.
target = Variable(torch.zeros(input.size()[0])) # We get the target.
output = netD(fake.detach()) # We forward propagate the fake generated images into the neural network of the discriminator to get the prediction (a value between 0 and 1).
errD_fake = criterion(output, target) # We compute the loss between the prediction (output) and the target (equal to 0).
# Backpropagating the total error
errD = errD_real + errD_fake # We compute the total error of the discriminator.
errD.backward() # We backpropagate the loss error by computing the gradients of the total error with respect to the weights of the discriminator.
optimizerD.step() # We apply the optimizer to update the weights according to how much they are responsible for the loss error of the discriminator.
# 2nd Step: Updating the weights of the neural network of the generator
netG.zero_grad() # We initialize to 0 the gradients of the generator with respect to the weights.
target = Variable(torch.ones(input.size()[0])) # We get the target.
output = netD(fake) # We forward propagate the fake generated images into the neural network of the discriminator to get the prediction (a value between 0 and 1).
errG = criterion(output, target) # We compute the loss between the prediction (output between 0 and 1) and the target (equal to 1).
errG.backward() # We backpropagate the loss error by computing the gradients of the total error with respect to the weights of the generator.
optimizerG.step() # We apply the optimizer to update the weights according to how much they are responsible for the loss error of the generator.
# 3rd Step: Printing the losses and saving the real images and the generated images of the minibatch every 100 steps
print('[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f' % (epoch, 25, i, len(dataloader), errD.data[0], errG.data[0])) # We print les losses of the discriminator (Loss_D) and the generator (Loss_G).
if i % 100 == 0: # Every 100 steps:
vutils.save_image(real, '%s/real_samples.png' % "./results", normalize = True) # We save the real images of the minibatch.
fake = netG(noise) # We get our fake generated images.
vutils.save_image(fake.data, '%s/fake_samples_epoch_%03d.png' % ("./results", epoch), normalize = True) # We also save the fake generated images of the minibatch.
但是,当我执行这个示例时,它返回错误
BrokenPipeError:[Errno 32] 管道损坏
这似乎发生在生产线上
for i, data in enumerate(dataloader, 0): # We iterate over the images of the dataset.
这是整个回溯:
runfile('C:/Users/ncui/Dropbox/JuJu/Base_projects/Udemy/Computer_Vision_A_Z/Module 3 - GANs/dcgan_commented.py', wdir='C:/Users/ncui/Dropbox/JuJu/Base_projects/Udemy/Computer_Vision_A_Z/Module 3 - GANs')
Files already downloaded and verified
Traceback (most recent call last):
File "<ipython-input-4-a3a7a503f14c>", line 1, in <module>
runfile('C:/Users/ncui/Dropbox/JuJu/Base_projects/Udemy/Computer_Vision_A_Z/Module 3 - GANs/dcgan_commented.py', wdir='C:/Users/ncui/Dropbox/JuJu/Base_projects/Udemy/Computer_Vision_A_Z/Module 3 - GANs')
File "C:\Users\ncui\AppData\Local\Continuum\anaconda3\envs\tensorflow\lib\site-packages\spyder_kernels\customize\spydercustomize.py", line 786, in runfile
execfile(filename, namespace)
File "C:\Users\ncui\AppData\Local\Continuum\anaconda3\envs\tensorflow\lib\site-packages\spyder_kernels\customize\spydercustomize.py", line 110, in execfile
exec(compile(f.read(), filename, 'exec'), namespace)
File "C:/Users/ncui/Dropbox/JuJu/Base_projects/Udemy/Computer_Vision_A_Z/Module 3 - GANs/dcgan_commented.py", line 104, in <module>
for i, data in enumerate(dataloader, 0): # We iterate over the images of the dataset.
File "C:\Users\ncui\AppData\Local\Continuum\anaconda3\envs\tensorflow\lib\site-packages\torch\utils\data\dataloader.py", line 819, in __iter__
return _DataLoaderIter(self)
File "C:\Users\ncui\AppData\Local\Continuum\anaconda3\envs\tensorflow\lib\site-packages\torch\utils\data\dataloader.py", line 560, in __init__
w.start()
File "C:\Users\ncui\AppData\Local\Continuum\anaconda3\envs\tensorflow\lib\multiprocessing\process.py", line 105, in start
self._popen = self._Popen(self)
File "C:\Users\ncui\AppData\Local\Continuum\anaconda3\envs\tensorflow\lib\multiprocessing\context.py", line 223, in _Popen
return _default_context.get_context().Process._Popen(process_obj)
File "C:\Users\ncui\AppData\Local\Continuum\anaconda3\envs\tensorflow\lib\multiprocessing\context.py", line 322, in _Popen
return Popen(process_obj)
File "C:\Users\ncui\AppData\Local\Continuum\anaconda3\envs\tensorflow\lib\multiprocessing\popen_spawn_win32.py", line 65, in __init__
reduction.dump(process_obj, to_child)
File "C:\Users\ncui\AppData\Local\Continuum\anaconda3\envs\tensorflow\lib\multiprocessing\reduction.py", line 60, in dump
ForkingPickler(file, protocol).dump(obj)
BrokenPipeError: [Errno 32] Broken pipe
我尝试一步一步进行操作,但我无法从我的变量资源管理器中看到 dataloader
、i
和 data
内容。不太明白。
我使用的是Windows 7、Python 3.6,并使用spyder作为Python IDE。该脚本使用的数据可以在 here 找到.
任何人都可以提供一些指导
dataloader
、i
和 data
dataloader
、i
和 data
是什么非常感谢。
最佳答案
添加
if __name__ == "__main__":
在第一个 for 循环前面。
关于python - splinter 管道错误: [Errno 32] Broken pipe error when running GANs,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/55024440/
reqwest v0.9 将 serde v1.0 作为依赖项,因此实现 converting serde_json errors into reqwest error . 在我的代码中,我使用 se
我有这个代码: let file = FileStorage { // ... }; file.write("Test", bytes.as_ref()) .map_err(|e| Mu
我只是尝试用angular-cli创建一个新项目,然后运行服务器,但是它停止并显示一条有趣的消息:Error: No errors。 我以这种方式更新了(希望有帮助):npm uninstall -g
我从我的 javascript 发送交易 Metamask 打开传输对话框 我确定 i get an error message in metamask (inpage.js:1 MetaMask -
这个问题在这里已经有了答案: How do you define custom `Error` types in Rust? (3 个答案) How to get a reference to a
我想知道两者之间有什么大的区别 if let error = error{} vs if error != nil?或者只是人们的不同之处,比如他们如何用代码表达自己? 例如,如果我使用这段代码: u
当我尝试发送超过 50KB 的图像时,我在 Blazor 服务器应用程序上收到以下错误消息 Error: Connection disconnected with error 'Error: Serv
我有一个error-page指令,它将所有异常重定向到错误显示页面 我的web.xml: [...] java.lang.Exception /vi
我有这样的对象: address: { "phone" : 888, "value" : 12 } 在 WHERE 中我需要通过 address.value 查找对象,但是在 SQL 中有函数
每次我尝试编译我的代码时,我都会遇到大量错误。这不是我的代码的问题,因为它在另一台计算机上工作得很好。我尝试重新安装和修复,但这没有帮助。这是整个错误消息: 1>------ Build starte
在我的代码的类部分,如果我写一个错误,则在不应该的情况下,将有几行报告为错误。我将'| error'放在可以从错误中恢复的良好/安全位置,但是我认为它没有使用它。也许它试图在某个地方恢复中间表情? 有
我遇到了 csv 输入文件整体读取故障的问题,我可以通过在 read_csv 函数中添加 "error_bad_lines=False" 来删除这些问题来解决这个问题。 但是我需要报告这些造成问题的文
在 Spring 中,验证后我们在 controller 中得到一个 BindingResult 对象。 很简单,如果我收到验证错误,我想重新显示我的表单,并在每个受影响的字段上方显示错误消息。 因此
我不知道出了什么问题,因为我用 Java 编程了大约一年,从来没有遇到过这个错误。在一分钟前在 Eclipse 中编译和运行工作,现在我得到这个错误: #A fatal error has been
SELECT to_char(messages. TIME, 'YYYY/MM/DD') AS FullDate, to_char(messages. TIME, 'MM/DD
我收到这些错误: AnonymousPath\Anonymized.vb : error BC30037: Character is not valid. AnonymousPath\Anonymiz
我刚刚安装了 gridengine 并在执行 qstat 时出现错误: error: commlib error: got select error (Connection refused) erro
嗨,我正在学习 PHP,我从 CRUD 系统开始,我在 Windows 上安装了 WAMP 服务器,当我运行它时,我收到以下错误消息。 SCREAM: Error suppression ignore
我刚刚开始一个新项目,我正在学习核心数据教程,可以找到:https://www.youtube.com/watch?v=zZJpsszfTHM 我似乎无法弄清楚为什么会抛出此错误。我有一个名为“Exp
当我使用 Jenkins 运行新构建时,出现以下错误: "FilePathY\XXX.cpp : fatal error C1853: 'FilePathZ\XXX.pch' precompiled
我是一名优秀的程序员,十分优秀!