gpt4 book ai didi

python - keras:如何编写自定义损失函数以将帧级预测聚合到歌曲级预测

转载 作者:行者123 更新时间:2023-11-30 09:04:48 25 4
gpt4 key购买 nike

我正在做歌曲流派分类(2类)。对于每首歌曲,我将它们切成小帧(5 秒)以生成 MFCC 作为神经网络的输入特征,并且每个帧都有一个关联的歌曲流派标签。

数据如下所示:

 name         label   feature
....
song_i_frame1 label feature_vector_frame1
song_i_frame2 label feature_vector_frame2
...
song_i_framek label feature_vector_framek
...

我知道我可以随机选择 80% 的歌曲(它们的小帧)作为训练数据,其余的作为测试数据。但现在我写X_train的方式是帧级别的帧,并且biney交叉熵损失函数是在帧级别定义的。我想知道如何自定义损失函数,使其在帧级预测的聚合(例如歌曲的每帧预测的多数票)上最小化。

目前,我拥有的是:

model_19mfcc = Model(input_shape = (X_train19.shape[1], X_train19.shape[2]))
model_19mfcc.compile(loss='binary_crossentropy', optimizer="RMSProp", metrics=["accuracy"])
history_fit = model_19mfcc.fit(X_train19, y_train,validation_split=0.25, batch_size = 1800/50, epochs= 200)

此外,当我将训练和测试数据输入 keras 时,数据的相应 ID(名称)会丢失,将数据(名称、lebel 和特征)保存在单独的 pandas 数据框中并匹配预测keras 是一个好的做法吗?或者还有其他好的选择吗?

提前致谢!

最佳答案

流派分类通常不需要定制的损失函数。可以使用 Multiple Instance Learning 设置将歌曲分为多个预测窗口的组合模型(军用)。

MIL 是一种监督学习方法,其中标签不是在每个独立样本(实例)上,而是在实例的“包”(无序集)上。在您的例子中,实例是 MFCC 功能的每 5 秒窗口,包是整首歌曲。

在 Keras 中,我们使用 TimeDistributed 层来为所有窗口执行模型。然后我们使用 GlobalAveragePooling1D 有效地组合结果跨窗口实现平均投票。这比多数投票更容易区分。

下面是一个可运行的示例:

import math

import keras
import librosa
import pandas
import numpy
import sklearn

def window_model(n_bands, n_frames, n_classes, hidden=32):
from keras.layers import Input, Dense, Flatten, Conv2D, MaxPooling2D

out_units = 1 if n_classes == 2 else n_classes
out_activation = 'sigmoid' if n_classes == 2 else 'softmax'

shape = (n_bands, n_frames, 1)

# Basic CNN model
# An MLP could also be used, but may need to reshape on input and output
model = keras.Sequential([
Conv2D(16, (3,3), input_shape=shape),
MaxPooling2D((2,3)),
Conv2D(16, (3,3)),
MaxPooling2D((2,2)),
Flatten(),
Dense(hidden, activation='relu'),
Dense(hidden, activation='relu'),
Dense(out_units, activation=out_activation),
])
return model

def song_model(n_bands, n_frames, n_windows, n_classes=3):
from keras.layers import Input, TimeDistributed, GlobalAveragePooling1D

# Create the frame-wise model, will be reused across all frames
base = window_model(n_bands, n_frames, n_classes)
# GlobalAveragePooling1D expects a 'channel' dimension at end
shape = (n_windows, n_bands, n_frames, 1)

print('Frame model')
base.summary()

model = keras.Sequential([
TimeDistributed(base, input_shape=shape),
GlobalAveragePooling1D(),
])

print('Song model')
model.summary()

model.compile(loss='categorical_crossentropy', optimizer='SGD', metrics=['acc'])
return model


def extract_features(path, sample_rate, n_bands, hop_length, n_frames, window_length, song_length):
# melspectrogram might perform better with CNNs
from librosa.feature import mfcc

# Load a fixed length section of sound
# Might need to pad if some songs are too short
y, sr = librosa.load(path, sr=sample_rate, offset=0, duration=song_length)
assert sr == sample_rate, sr
_song_length = len(y)/sample_rate

assert _song_length == song_length, _song_length

# Split into windows
window_samples = int(sample_rate * window_length)
window_hop = window_samples//2 # use 50% overlap
windows = librosa.util.frame(y, frame_length=window_samples, hop_length=window_hop)

# Calculate features for each window
features = []
for w in range(windows.shape[1]):
win = windows[:, w]
f = mfcc(y=win, sr=sample_rate, n_mfcc=n_bands,
hop_length=hop_length, n_fft=2*hop_length)
f = numpy.expand_dims(f, -1) # add channels dimension
features.append(f)

features = numpy.stack(features)
return features

def main():

# Settings for our model
n_bands = 13 # MFCCs
sample_rate = 22050
hop_length = 512
window_length = 5.0
song_length_max = 1.0*60
n_frames = math.ceil(window_length / (hop_length/sample_rate))
n_windows = math.floor(song_length_max / (window_length/2))-1

model = song_model(n_bands, n_frames, n_windows)

# Generate some example data
ex = librosa.util.example_audio_file()
examples = 8
numpy.random.seed(2)
songs = pandas.DataFrame({
'path': [ex] * examples,
'genre': numpy.random.choice([ 'rock', 'metal', 'blues' ], size=examples),
})
assert len(songs.genre.unique() == 3)

print('Song data')
print(songs)

def get_features(path):
f = extract_features(path, sample_rate, n_bands,
hop_length, n_frames, window_length, song_length_max)
return f

from sklearn.preprocessing import LabelBinarizer

binarizer = LabelBinarizer()
y = binarizer.fit_transform(songs.genre.values)
print('y', y.shape, y)

features = numpy.stack([ get_features(p) for p in songs.path ])
print('features', features.shape)

model.fit(features, y)


if __name__ == '__main__':
main()

该示例输出内部模型摘要和组合模型摘要:

Frame model
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d_1 (Conv2D) (None, 11, 214, 16) 160
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 5, 71, 16) 0
_________________________________________________________________
conv2d_2 (Conv2D) (None, 3, 69, 16) 2320
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 1, 34, 16) 0
_________________________________________________________________
flatten_1 (Flatten) (None, 544) 0
_________________________________________________________________
dense_1 (Dense) (None, 32) 17440
_________________________________________________________________
dense_2 (Dense) (None, 32) 1056
_________________________________________________________________
dense_3 (Dense) (None, 3) 99
=================================================================
Total params: 21,075
Trainable params: 21,075
Non-trainable params: 0
_________________________________________________________________
Song model
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
time_distributed_1 (TimeDist (None, 23, 3) 21075
_________________________________________________________________
global_average_pooling1d_1 ( (None, 3) 0
=================================================================
Total params: 21,075
Trainable params: 21,075
Non-trainable params: 0
_________________________________________________________________

以及输入模型的特征向量的形状:

features (8, 23, 13, 216, 1)

8首歌曲,每首23个窗口,13个MFCC频段,每个窗口216帧。第五维大小为 1,让 Keras 高兴......

关于python - keras:如何编写自定义损失函数以将帧级预测聚合到歌曲级预测,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/55272508/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com