gpt4 book ai didi

python - 无法弄清楚 pytorch 代码中的就地操作?

转载 作者:行者123 更新时间:2023-11-30 09:03:54 27 4
gpt4 key购买 nike

我在 PyTorch 中有以下实现,用于使用 LSTM 进行学习:

https://gist.github.com/rahulbhadani/f1d64042cc5a80280755cac262aa48aa

但是,代码遇到就地操作错误

我的错误输出是:

/home/ivory/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:10: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
# Remove the CWD from sys.path while we load stuff.
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<ipython-input-86-560ec78f2b64> in <module>
27 linear = torch.nn.Linear(hidden_nums, output_dim)
28
---> 29 global_loss_list = global_training(lstm2)

<ipython-input-84-152890a3028c> in global_training(optimizee)
3 adam_global_optimizer = torch.optim.Adam([{'params': optimizee.parameters()},
4 {'params':linear.parameters()}], lr = 0.0001)
----> 5 _, global_loss_1 = learn2(LSTM_Optimizee, training_steps, retain_graph_flag=True, reset_theta=True)
6
7 print(global_loss_1)

<ipython-input-83-0357a528b94d> in learn2(optimizee, unroll_train_steps, retain_graph_flag, reset_theta)
43 # requires_grad=True. These are accumulated into x.grad for every
44 # parameter x. In pseudo-code: x.grad += dloss/dx
---> 45 loss.backward(retain_graph = retain_graph_flag) #The default is False, when the optimized LSTM is set to True
46
47 print('x.grad: {}'.format(x.grad))

~/anaconda3/lib/python3.7/site-packages/torch/tensor.py in backward(self, gradient, retain_graph, create_graph)
116 products. Defaults to ``False``.
117 """
--> 118 torch.autograd.backward(self, gradient, retain_graph, create_graph)
119
120 def register_hook(self, hook):

~/anaconda3/lib/python3.7/site-packages/torch/autograd/__init__.py in backward(tensors, grad_tensors, retain_graph, create_graph, grad_variables)
91 Variable._execution_engine.run_backward(
92 tensors, grad_tensors, retain_graph, create_graph,
---> 93 allow_unreachable=True) # allow_unreachable flag
94
95

RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.FloatTensor [1, 10]] is at version 1; expected version 0 instead. Hint: enable anomaly detection to find the operation that failed to compute its gradient, with torch.autograd.set_detect_anomaly(True).

我试图追踪错误,但没有成功。在这方面的任何帮助将不胜感激。

谢谢。

最佳答案

我认为问题在于以下行:

global_loss_list.append(global_loss.detach_())

PyTorch 中就地操作的惯例是在函数名称末尾使用 _ (如 detach_ 中所示)。我相信你不应该就地分离。换句话说,将 detach_ 更改为 detach

关于python - 无法弄清楚 pytorch 代码中的就地操作?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/57500582/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com