gpt4 book ai didi

machine-learning - 如何处理机器学习算法中的定性数据

转载 作者:行者123 更新时间:2023-11-30 09:00:50 25 4
gpt4 key购买 nike

假设我尝试使用神经网络来预测我的运行需要多长时间。我有很多过去运行的数据。我计划跑多少英里、海拔(山丘)的总变化、温度和天气:晴天、阴天、下雨或下雪。

我对如何处理最后一条数据感到困惑。对于其他一切,标准化后我可以正常输入,但对于天气我不能这样做。我最初的想法是有 4 个额外的变量,每个变量对应一种天气类型,输入时根据具体情况输入 1 或 0。

这是解决这种情况的好方法吗?我还应该尝试其他方法吗?

最佳答案

您有一个具有四个级别的分类变量。

对此类值进行编码的一种非常典型的方法是为每个值使用单独的变量。或者,更常见的是“n-1”编码,其中使用少一个标志(第四个值表示全部为 0)。

n-1 编码用于需要数字输入的技术,包括逻辑回归和神经网络。对于较大的“n”值,那么这是一个糟糕的选择。问题在于它创建了许多稀疏数据的输入;稀疏数据是高度相关的。更多的输入意味着网络中有更多的自由度,从而使网络更难训练。

就您而言,此特定输入只有四个值。将其分为三个变量可能是合理的。

关于machine-learning - 如何处理机器学习算法中的定性数据,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/38733121/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com