- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试预测输入向量中每个数字的类别。有3个类(class)。如果输入值从 0 变为 1,则为 1 类。如果从 1 变为 0,则为 2 类。否则为 0 类。
在第二个纪元之后,精度停留在 0.8824。更高数量的训练纪元不会改变任何东西。我尝试将 LSTM 切换为 GRU 或 SimpleRNN,但这没有任何改变。我还尝试生成更长的输入向量和多个批处理,但没有成功。
唯一有帮助的是将 LSTM 层的大小增加到 128,在包括 LSTM 的每一层之后添加三个 TimeDistributedDense(128, relu)
层和 BatchNormalization
。但对于这样一个简单的问题来说,它看起来有点矫枉过正,而且无论如何也不能给出完美的结果。
我花了一天多的时间试图让它发挥作用。可能有什么问题?谢谢!
# complete code for training
from keras.models import Sequential
from keras.layers import Dense, LSTM, TimeDistributed
from keras.utils.np_utils import to_categorical
import numpy as np
np.random.seed(1337)
X = np.array([0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0])
Y = np.array([0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0])
Y_cat = to_categorical(Y, 3).reshape((1, len(X), 3))
X_r = X.reshape((1, len(X), 1))
model = Sequential()
model.add(LSTM(32, input_dim=1, return_sequences=True))
model.add(LSTM(32, return_sequences=True))
model.add(LSTM(32, return_sequences=True))
model.add(TimeDistributed(Dense(3, activation='softmax')))
model.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])
model.fit(X_r, Y_cat, nb_epoch=10)
model.predict_classes(X_r) # will print array filled with zeros
最佳答案
您可以看出出现了问题,因为您的代码的损失值在第一个纪元之后为 NaN。这个问题是一个常见问题,过去不止一次困扰过我,那就是 fit
方法采用默认为 32 的 batch_size
参数。因为你只有举个例子,你甚至无法填充一批,这种情况显然是 Keras 没有检测到的,但会导致错误的损失计算。所以你只需要将其更改为:
model.fit(X_r, Y_cat, nb_epoch=10, batch_size=1)
不过,可能需要付出一些努力来拟合这些数据。神经网络很难处理单个特征(如果输入是单热编码的,也许会更容易)并且数据很小。此外,网越大/越深,需要的重量就越多(即使它应该更强大)。但至少现在你将能够看到损失是如何减少的。通过您的示例,我已经能够达到 100% 的准确率,删除第二个和第三个 LSTM 层并训练大约 250 个时期(当然,如果您有更多更长的示例,则数量肯定会更小)。
关于python - RNN 不会对简单数据过度拟合,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/41977498/
gnuplot 中拟合函数的正确方法是什么 f(x)有下一个表格吗? f(x) = A*exp(x - B*f(x)) 我尝试使用以下方法将其拟合为任何其他函数: fit f(x) "data.txt
(1)首先要建立数据集 ? 1
测量显示一个信号,其形式类似于具有偏移量和因子的平方根函数。如何找到系数并在一个图中绘制原始数据和拟合曲线? require(ggplot2) require(nlmrt) # may be thi
我想将以下函数拟合到我的数据中: f(x) = Offset+Amplitudesin(FrequencyT+Phase), 或根据 Wikipedia : f(x) = C+alphasin(ome
我正在尝试使用与此工具相同的方法在 C# 中拟合 Akima 样条曲线:https://www.mycurvefit.com/share/4ab90a5f-af5e-435e-9ce4-652c95c
问题:开放层适合 map ,只有在添加特征之后(视觉),我该如何避免这种情况? 我在做这个 第 1 步 - 创建特征 var feature = new ol.Feature({...}); 第 2
我有一个数据变量,其中包含以下内容: [Object { score="2.8", word="Blue"}, Object { score="2.8", word="Red"}, Objec
我正在尝试用中等大小的 numpy float 组来填充森林 In [3]: data.shape Out[3]: (401125, 5) [...] forest = forest.fit(data
我想用洛伦兹函数拟合一些数据,但我发现当我使用不同数量级的参数时拟合会出现问题。 这是我的洛伦兹函数: function [ value ] = lorentz( x,x0,gamma,amp )
我有一些数据,我希望对其进行建模,以便能够在与数据相同的范围内获得相对准确的值。 为此,我使用 polyfit 来拟合 6 阶多项式,由于我的 x 轴值,它建议我将其居中并缩放以获得更准确的拟合。 但
我一直在寻找一种方法来使数据符合 beta 二项分布并估计 alpha 和 beta,类似于 VGAM 库中的 vglm 包的方式。我一直无法找到如何在 python 中执行此操作。有一个 scipy
我将 scipy.optimize.minimize ( https://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html ) 函数与
在过去的几天里,我一直在尝试使用 python 绘制圆形数据,方法是构建一个范围从 0 到 2pi 的圆形直方图并拟合 Von Mises 分布。我真正想要实现的是: 具有拟合 Von-Mises 分
我有一个简单的循环,它在每次迭代中都会创建一个 LSTM(具有相同的参数)并将其拟合到相同的数据。问题是迭代过程中需要越来越多的时间。 batch_size = 10 optimizer = opti
我有一个 Python 系列,我想为其直方图拟合密度。问题:是否有一种巧妙的方法可以使用 np.histogram() 中的值来实现此结果? (请参阅下面的更新) 我目前的问题是,我执行的 kde 拟
我有一个简单的 keras 模型(正常套索线性模型),其中输入被移动到单个“神经元”Dense(1, kernel_regularizer=l1(fdr))(input_layer) 但是权重从这个模
我正在尝试解决 Boston Dataset 上的回归问题在random forest regressor的帮助下.我用的是GridSearchCV用于选择最佳超参数。 问题一 我是否应该将 Grid
使用以下函数,可以在输入点 P 上拟合三次样条: def plotCurve(P): pts = np.vstack([P, P[0]]) x, y = pts.T i = np.aran
我有 python 代码可以生成数字 x、y 和 z 的三元组列表。我想使用 scipy curve_fit 来拟合 z= f(x,y)。这是一些无效的代码 A = [(19,20,24), (10,
我正在尝试从 this answer 中复制代码,但是我在这样做时遇到了问题。我正在使用包 VGAM 中的gumbel 发行版和 fitdistrplus . 做的时候出现问题: fit = fi
我是一名优秀的程序员,十分优秀!