gpt4 book ai didi

machine-learning - ResNet 如何达到文档中的精度?

转载 作者:行者123 更新时间:2023-11-30 09:00:11 25 4
gpt4 key购买 nike

我按照这个文档https://arxiv.org/pdf/1512.03385.pdf实现了cifar 10的ResNet但我的准确度与文档中得到的准确度有明显差异我的 - 86%个人电脑女儿 - 94%我的错误是什么?

https://github.com/slavaglaps/ResNet_cifar10

最佳答案

你的问题有点太笼统了,我的观点是网络过度拟合训练数据集,你可以看到训练损失相当低,但在第 50 纪元之后验证损失不再改善.

我没有深入阅读这篇论文,所以我不知道他们是如何解决这个问题的,但增加正则化可能会有所帮助。以下链接将为您指明正确的方向 http://cs231n.github.io/neural-networks-3/

下面我复制了文本摘要:

Summary

To train a Neural Network:

  • Gradient check your implementation with a small batch of data and be aware of the pitfalls.
  • As a sanity check, make sure your initial loss is reasonable, and that you can achieve 100% training accuracy on a very small portion of the data
  • During training, monitor the loss, the training/validation accuracy, and if you’re feeling fancier, the magnitude of updates in relation to parameter values (it should be ~1e-3), and when dealing with ConvNets, the first-layer weights.
  • The two recommended updates to use are either SGD+Nesterov Momentum or Adam.
  • Decay your learning rate over the period of the training. For example, halve the learning rate after a fixed number of epochs, or whenever the validation accuracy tops off.
  • Search for good hyperparameters with random search (not grid search). Stage your search from coarse (wide hyperparameter ranges, training only for 1-5 epochs), to fine (narrower rangers, training for many more epochs)
  • Form model ensembles for extra performance

关于machine-learning - ResNet 如何达到文档中的精度?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/43355803/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com