- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
预先感谢您的帮助。
我在让 mxnet 模型收敛到任何东西时遇到一些问题:它似乎接近其初始权重。
一个工作示例(尽管我今天一直在努力让许多这样的模型工作)。我已经尝试了下面的方法,使用了一系列纪元(最多 100)和一系列学习率(0.001 到 10),但无法从中得到任何明智的结果。
import mxnet as mx
import numpy as np
inputs = np.expand_dims(np.random.uniform(size=10000), axis=1)
labels = np.sin(inputs)
data_iter = mx.io.NDArrayIter(data=inputs, label=labels, data_name='data', label_name='label', batch_size=50)
data = mx.sym.Variable('data')
label = mx.sym.Variable('label')
fc1 = mx.sym.FullyConnected(data=data, num_hidden=128)
ac1 = mx.sym.Activation(data=fc1, act_type='relu')
fc2 = mx.sym.FullyConnected(data=ac1, num_hidden=64)
ac2 = mx.sym.Activation(data=fc2, act_type='relu')
fc3 = mx.sym.FullyConnected(data=ac2, num_hidden=16)
ac3 = mx.sym.Activation(data=fc3, act_type='relu')
output = mx.sym.FullyConnected(data=ac3, num_hidden=1)
loss = mx.symbol.MakeLoss(mx.symbol.square(output - label), name="loss")
model = mx.module.Module(symbol=loss, data_names=('data',), label_names=('label',))
import logging
logging.getLogger().setLevel(logging.DEBUG)
model.fit(data_iter,
optimizer='sgd',
optimizer_params={'learning_rate':0.1},
eval_metric='mse',
num_epoch=5)
产生:
INFO:root:Epoch[0] Train-mse=0.221155
INFO:root:Epoch[0] Time cost=0.173
INFO:root:Epoch[1] Train-mse=0.225179
INFO:root:Epoch[1] Time cost=0.176
INFO:root:Epoch[2] Train-mse=0.225179
INFO:root:Epoch[2] Time cost=0.179
INFO:root:Epoch[3] Train-mse=0.225179
INFO:root:Epoch[3] Time cost=0.176
INFO:root:Epoch[4] Train-mse=0.225179
INFO:root:Epoch[4] Time cost=0.183
很明显,训练并没有真正取得进展。
最佳答案
我拿了你的代码并对其进行了一些更新,并且能够使其收敛,代码粘贴在下面。
我所做的更新:我更新了层,只有两个完全连接的层,每个层有 128 个单元,更新了损失函数以使用内置的线性回归,添加了动量并更新了学习率,最后 - 运行更多纪元
希望这有帮助!
import mxnet as mx
import numpy as np
inputs = np.expand_dims(np.random.uniform(size=10000), axis=1)
labels = np.sin(inputs)
data_iter = mx.io.NDArrayIter(data=inputs, label=labels, data_name='data', label_name='label', batch_size=50)
data = mx.sym.Variable('data')
label = mx.sym.Variable('label')
fc1 = mx.sym.FullyConnected(data=data, num_hidden=128)
ac1 = mx.sym.Activation(data=fc1, act_type='relu')
fc2 = mx.sym.FullyConnected(data=ac1, num_hidden=128)
ac2 = mx.sym.Activation(data=fc2, act_type='relu')
output = mx.sym.FullyConnected(data=ac2, num_hidden=1)
#loss = mx.symbol.MakeLoss(mx.symbol.square(output - label), name="loss")
loss = mx.sym.LinearRegressionOutput(data=output, label=label, name="loss")
model = mx.module.Module(symbol=loss, data_names=('data',), label_names=('label',))
import logging
logging.getLogger().setLevel(logging.DEBUG)
model.fit(data_iter,
optimizer='sgd',
optimizer_params={'learning_rate':0.005, 'momentum': 0.9},
eval_metric='mse',
num_epoch=50)
结果:
INFO:root:Epoch[0] Train-mse=0.076923
INFO:root:Epoch[0] Time cost=0.148
INFO:root:Epoch[1] Train-mse=0.061155
INFO:root:Epoch[1] Time cost=0.178
INFO:root:Epoch[2] Train-mse=0.061154
INFO:root:Epoch[2] Time cost=0.168
INFO:root:Epoch[3] Train-mse=0.061153
INFO:root:Epoch[3] Time cost=0.151
INFO:root:Epoch[4] Train-mse=0.061151
INFO:root:Epoch[4] Time cost=0.182
INFO:root:Epoch[5] Train-mse=0.061150
INFO:root:Epoch[5] Time cost=0.186
INFO:root:Epoch[6] Train-mse=0.061149
INFO:root:Epoch[6] Time cost=0.197
INFO:root:Epoch[7] Train-mse=0.061147
INFO:root:Epoch[7] Time cost=0.174
INFO:root:Epoch[8] Train-mse=0.061145
INFO:root:Epoch[8] Time cost=0.148
INFO:root:Epoch[9] Train-mse=0.061142
INFO:root:Epoch[9] Time cost=0.150
INFO:root:Epoch[10] Train-mse=0.061140
INFO:root:Epoch[10] Time cost=0.145
INFO:root:Epoch[11] Train-mse=0.061136
INFO:root:Epoch[11] Time cost=0.135
INFO:root:Epoch[12] Train-mse=0.061133
INFO:root:Epoch[12] Time cost=0.136
INFO:root:Epoch[13] Train-mse=0.061128
INFO:root:Epoch[13] Time cost=0.137
INFO:root:Epoch[14] Train-mse=0.061122
INFO:root:Epoch[14] Time cost=0.146
INFO:root:Epoch[15] Train-mse=0.061116
INFO:root:Epoch[15] Time cost=0.135
INFO:root:Epoch[16] Train-mse=0.061108
INFO:root:Epoch[16] Time cost=0.152
INFO:root:Epoch[17] Train-mse=0.061098
INFO:root:Epoch[17] Time cost=0.179
INFO:root:Epoch[18] Train-mse=0.061086
INFO:root:Epoch[18] Time cost=0.160
INFO:root:Epoch[19] Train-mse=0.061069
INFO:root:Epoch[19] Time cost=0.151
INFO:root:Epoch[20] Train-mse=0.061050
INFO:root:Epoch[20] Time cost=0.145
INFO:root:Epoch[21] Train-mse=0.061024
INFO:root:Epoch[21] Time cost=0.164
INFO:root:Epoch[22] Train-mse=0.060990
INFO:root:Epoch[22] Time cost=0.151
INFO:root:Epoch[23] Train-mse=0.060944
INFO:root:Epoch[23] Time cost=0.141
INFO:root:Epoch[24] Train-mse=0.060881
INFO:root:Epoch[24] Time cost=0.136
INFO:root:Epoch[25] Train-mse=0.060790
INFO:root:Epoch[25] Time cost=0.124
INFO:root:Epoch[26] Train-mse=0.060658
INFO:root:Epoch[26] Time cost=0.151
INFO:root:Epoch[27] Train-mse=0.060455
INFO:root:Epoch[27] Time cost=0.166
INFO:root:Epoch[28] Train-mse=0.060131
INFO:root:Epoch[28] Time cost=0.148
INFO:root:Epoch[29] Train-mse=0.059582
INFO:root:Epoch[29] Time cost=0.219
INFO:root:Epoch[30] Train-mse=0.058581
INFO:root:Epoch[30] Time cost=0.160
INFO:root:Epoch[31] Train-mse=0.056593
INFO:root:Epoch[31] Time cost=0.178
INFO:root:Epoch[32] Train-mse=0.052252
INFO:root:Epoch[32] Time cost=0.184
INFO:root:Epoch[33] Train-mse=0.042274
INFO:root:Epoch[33] Time cost=0.168
INFO:root:Epoch[34] Train-mse=0.023321
INFO:root:Epoch[34] Time cost=0.162
INFO:root:Epoch[35] Train-mse=0.005860
INFO:root:Epoch[35] Time cost=0.161
INFO:root:Epoch[36] Train-mse=0.000848
INFO:root:Epoch[36] Time cost=0.164
INFO:root:Epoch[37] Train-mse=0.000319
INFO:root:Epoch[37] Time cost=0.176
INFO:root:Epoch[38] Train-mse=0.000221
INFO:root:Epoch[38] Time cost=0.148
INFO:root:Epoch[39] Train-mse=0.000163
INFO:root:Epoch[39] Time cost=0.199
INFO:root:Epoch[40] Train-mse=0.000123
INFO:root:Epoch[40] Time cost=0.141
INFO:root:Epoch[41] Train-mse=0.000096
INFO:root:Epoch[41] Time cost=0.133
INFO:root:Epoch[42] Train-mse=0.000078
INFO:root:Epoch[42] Time cost=0.144
INFO:root:Epoch[43] Train-mse=0.000065
INFO:root:Epoch[43] Time cost=0.174
INFO:root:Epoch[44] Train-mse=0.000056
INFO:root:Epoch[44] Time cost=0.208
INFO:root:Epoch[45] Train-mse=0.000050
INFO:root:Epoch[45] Time cost=0.152
INFO:root:Epoch[46] Train-mse=0.000045
INFO:root:Epoch[46] Time cost=0.154
INFO:root:Epoch[47] Train-mse=0.000041
INFO:root:Epoch[47] Time cost=0.151
INFO:root:Epoch[48] Train-mse=0.000039
INFO:root:Epoch[48] Time cost=0.177
INFO:root:Epoch[49] Train-mse=0.000036
INFO:root:Epoch[49] Time cost=0.135
关于machine-learning - mxnet 训练没有进展,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45849548/
基本上,我的问题是,由于无监督学习是机器学习的一种,是否需要机器“学习”的某些方面并根据其发现进行改进?例如,如果开发了一种算法来获取未标记的图像并找到它们之间的关联,那么它是否需要根据这些关联来改进
生成模型和判别模型似乎可以学习条件 P(x|y) 和联合 P(x,y) 概率分布。但从根本上讲,我无法说服自己“学习概率分布”意味着什么。 最佳答案 这意味着您的模型要么充当训练样本的分布估计器,要么
是否有类似于 的 scikit-learn 方法/类元成本 在 Weka 或其他实用程序中实现的算法以执行常量敏感分析? 最佳答案 不,没有。部分分类器提供 class_weight和 sample_
是否Scikit-learn支持迁移学习?请检查以下代码。 型号 clf由 fit(X,y) 获取 jar 头型号clf2在clf的基础上学习和转移学习 fit(X2,y2) ? >>> from s
我发现使用相同数据的两种交叉验证技术之间的分类性能存在差异。我想知道是否有人可以阐明这一点。 方法一:cross_validation.train_test_split 方法 2:分层折叠。 具有相同
我正在查看 scikit-learn 文档中的这个示例:http://scikit-learn.org/0.18/auto_examples/model_selection/plot_nested_c
我想训练一个具有很多标称属性的数据集。我从一些帖子中注意到,要转换标称属性必须将它们转换为重复的二进制特征。另外据我所知,这样做在概念上会使数据集稀疏。我也知道 scikit-learn 使用稀疏矩阵
我正在尝试在 scikit-learn (sklearn.feature_selection.SelectKBest) 中通过卡方方法进行特征选择。当我尝试将其应用于多标签问题时,我收到此警告: 用户
有几种算法可以构建决策树,例如 CART(分类和回归树)、ID3(迭代二分法 3)等 scikit-learn 默认使用哪种决策树算法? 当我查看一些决策树 python 脚本时,它神奇地生成了带有
我正在尝试在 scikit-learn (sklearn.feature_selection.SelectKBest) 中通过卡方方法进行特征选择。当我尝试将其应用于多标签问题时,我收到此警告: 用户
有几种算法可以构建决策树,例如 CART(分类和回归树)、ID3(迭代二分法 3)等 scikit-learn 默认使用哪种决策树算法? 当我查看一些决策树 python 脚本时,它神奇地生成了带有
有没有办法让 scikit-learn 中的 fit 方法有一个进度条? 是否可以包含自定义的类似 Pyprind 的内容? ? 最佳答案 如果您使用 verbose=1 初始化模型调用前 fit你应
我正在使用基于 rlglue 的 python-rl q 学习框架。 我的理解是,随着情节的发展,算法会收敛到一个最优策略(这是一个映射,说明在什么状态下采取什么行动)。 问题 1:这是否意味着经过若
我正在尝试使用 grisSearchCV 在 scikit-learn 中拟合一些模型,并且我想使用“一个标准错误”规则来选择最佳模型,即从分数在 1 以内的模型子集中选择最简约的模型最好成绩的标准误
我正在尝试离散数据以进行分类。它们的值是字符串,我将它们转换为数字 0,1,2,3。 这就是数据的样子(pandas 数据框)。我已将数据帧拆分为 dataLabel 和 dataFeatures L
每当我开始拥有更多的类(1000 或更多)时,MultinominalNB 就会变得非常慢并且需要 GB 的 RAM。对于所有支持 .partial_fit()(SGDClassifier、Perce
我需要使用感知器算法来研究一些非线性可分数据集的学习率和渐近误差。 为了做到这一点,我需要了解构造函数的一些参数。我花了很多时间在谷歌上搜索它们,但我仍然不太明白它们的作用或如何使用它们。 给我带来更
我知道作为功能 ordinal data could be assigned arbitrary numbers and OneHotEncoding could be done for catego
这是一个示例,其中有逐步的过程使系统学习并对输入数据进行分类。 它对给定的 5 个数据集域进行了正确分类。此外,它还对停用词进行分类。 例如 输入:docs_new = ['上帝就是爱', '什么在哪
我有一个 scikit-learn 模型,它简化了一点,如下所示: clf1 = RandomForestClassifier() clf1.fit(data_training, non_binary
我是一名优秀的程序员,十分优秀!