- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
这是用 Keras 编写的代码,用于回归正弦函数。它运行完美。
import numpy as np
from keras.layers import Dense, Activation
from keras.models import Sequential
import matplotlib.pyplot as plt
import math
import time
x = np.arange(0, math.pi*2*2, 0.1)
y = np.sin(x)
model = Sequential([Dense(10, input_shape=(1,)), Activation('tanh'), Dense(3),Activation('tanh'),Dense(1)])
model.compile(loss='mean_squared_error', optimizer='SGD', metrics=['mean_squared_error'])
t1 = time.clock()
for i in range(40):
model.fit(x, y, epochs=1000, batch_size=len(x), verbose=0)
predictions = model.predict(x)
print i," ", np.mean(np.square(predictions - y))," t: ", time.clock()-t1
plt.hold(False)
plt.plot(x, y, 'b', x, predictions, 'r--')
plt.hold(True)
plt.ylabel('Y / Predicted Value')
plt.xlabel('X Value')
plt.title([str(i)," Loss: ",np.mean(np.square(predictions - y))," t: ", str(time.clock()-t1)])
plt.pause(0.001)
plt.savefig("fig2.png")
plt.show()
我尝试使用较低的 API 编写相同的代码来了解神经网络的工作原理。以下是我编写的用于使用 Tensorflow 回归正弦函数的代码:
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import math
# Model input and output
x = tf.placeholder(tf.float32, [None, 1])
y = tf.placeholder(tf.float32, [None, 1])
# training data
x_plot = np.arange(0, math.pi*2*2, 0.1)
x_train = x_plot.reshape(-1, 1)
y_train_tf = tf.sin(x)
# Model parameters
W1 = tf.Variable(tf.ones([1,10])*.3, dtype=tf.float32)
b1 = tf.Variable(tf.ones([10])*(-.3), dtype=tf.float32)
W2 = tf.Variable(tf.ones([10,3])*.3, dtype=tf.float32)
b2 = tf.Variable(tf.ones([3])*(-.3), dtype=tf.float32)
W3 = tf.Variable(tf.ones([3,1])*.3, dtype=tf.float32)
b3 = tf.Variable(tf.ones([1])*(-.3), dtype=tf.float32)
layer1 = tf.tanh(tf.multiply(x,W1) + b1)
layer2 = tf.tanh(tf.matmul(layer1, W2) + b2)
linear_model = tf.reduce_sum(tf.matmul(layer2, W3), 1, keep_dims=True) + b3
# loss
loss = tf.reduce_sum(tf.square(linear_model - y)) # sum of the squares
# optimizer
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)
# training loop
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init) # reset values to wrong
fig, ax = plt.subplots()
for i in range(40000):
y_train = sess.run(y_train_tf, {x: x_train}) # das kann weg, dafuer ist dann in der naechsten zeile nur xtrain input, kein ytrain
f_predict, _ = sess.run([linear_model, train], feed_dict={x: x_train, y: y_train})
curr_layer1, curr_layer2, curr_W1, curr_b1, curr_W2, curr_b2, curr_W3, curr_b3, curr_loss = sess.run([layer1, layer2, W1, b1, W2, b2, W3, b3, loss],
{x: x_train, y: y_train})
if i % 1000 == 999:
print "step ", i
print("W1: %s b1: %s" % (curr_W1, curr_b1))
print("W2: %s b2: %s" % (curr_W2, curr_b2))
print("W3: %s b3: %s" % (curr_W3, curr_b3))
print("layer1: %s layer2: %s" % (curr_layer1, curr_layer2))
print("linear_model: %s loss: %s" % (f_predict, curr_loss))
print " "
y_plot = y_train.reshape(1, -1)[0]
pred_plot = f_predict.reshape(1, -1)[0]
plt.hold(False)
ax.plot(x_plot, y_train[:])
plt.hold(True)
ax.plot(x_plot, f_predict, 'o-')
ax.set(xlabel='X Value', ylabel='Y / Predicted Value',
title=[str(i)," Loss: ",curr_loss])
plt.pause(0.001)
fig.savefig("fig1.png")
plt.show()
但它不起作用。我不明白差异在哪里。 Keras代码中的学习率默认为0.01。优化器是相同的。网络是一样的。我不知道我的错误在哪里。
最佳答案
这就是答案!我忘了找到合适的重量来开始! tf.random_normal([1,10], stddev=0.03)
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import math
# Model input and output
x = tf.placeholder(tf.float32, [None, 1])
# training data
x_plot = np.arange(0, math.pi*2*2, 0.1)
x_train = x_plot.reshape(-1, 1)
y_train_tf = tf.sin(x)
# Model parameters
W1 = tf.Variable(tf.random_normal([1,10], stddev=0.03), dtype=tf.float32, name='W1')
b1 = tf.Variable(tf.random_normal([10], stddev=0.03), dtype=tf.float32, name='b1')
W2 = tf.Variable(tf.random_normal([10,3], stddev=0.03), dtype=tf.float32, name='W2')
b2 = tf.Variable(tf.random_normal([3], stddev=0.03), dtype=tf.float32, name='b2')
W3 = tf.Variable(tf.random_normal([3,1], stddev=0.03), dtype=tf.float32, name='W3')
b3 = tf.Variable(tf.random_normal([1], stddev=0.03), dtype=tf.float32, name='b3')
layer1 = tf.tanh(tf.multiply(x,W1) + b1)
layer2 = tf.tanh(tf.matmul(layer1, W2) + b2)
linear_model = tf.reduce_sum(tf.matmul(layer2, W3) + b3, 1, keep_dims=True)
# loss
#loss = tf.reduce_sum(tf.square(linear_model - y_train_tf)) # sum of the squares
loss = tf.losses.mean_squared_error(y_train_tf,linear_model)
tf.summary.scalar('loss', loss)
# optimizer
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)
# training loop
init = tf.global_variables_initializer()
sess = tf.Session()
# Merge all the summaries
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter('train_tensorboard',sess.graph)
sess.run(init) # reset values to wrong
fig, ax = plt.subplots()
for i in range(40000):
summary, f_predict, _ = sess.run([merged, linear_model, train], feed_dict={x: x_train})
y_train, curr_layer1, curr_layer2, curr_W1, curr_b1, curr_W2, curr_b2, curr_W3, curr_b3, curr_loss = sess.run([y_train_tf,layer1, layer2, W1, b1, W2, b2, W3, b3, loss],
{x: x_train})
train_writer.add_summary(summary, i)
if i % 1000 == 999:
print "step ", i
print("W1: %s b1: %s" % (curr_W1, curr_b1))
print("W2: %s b2: %s" % (curr_W2, curr_b2))
print("W3: %s b3: %s" % (curr_W3, curr_b3))
print("layer1: %s layer2: %s" % (curr_layer1, curr_layer2))
print("linear_model: %s loss: %s" % (f_predict, curr_loss))
print " "
y_plot = y_train.reshape(1, -1)[0]
pred_plot = f_predict.reshape(1, -1)[0]
plt.hold(False)
ax.plot(x_plot, y_train[:])
plt.hold(True)
ax.plot(x_plot, f_predict, 'g--')
ax.set(xlabel='X Value', ylabel='Y / Predicted Value', title=[str(i)," Loss: ", curr_loss])
plt.pause(0.001)
fig.savefig("fig1.png")
plt.show()
关于python - 使用 tensorflow 预测正弦与使用 keras 不同,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46998182/
我正在使用 R 预测包拟合模型,如下所示: fit <- auto.arima(df) plot(forecast(fit,h=200)) 打印原始数据框和预测。当 df 相当大时,这
我正在尝试预测自有住房的中位数,这是一个行之有效的例子,给出了很好的结果。 https://heuristically.wordpress.com/2011/11/17/using-neural-ne
type="class"函数中的type="response"和predict有什么区别? 例如: predict(modelName, newdata=testData, type = "class
我有一个名为 Downloaded 的文件夹,其中包含经过训练的 CNN 模型必须对其进行预测的图像。 下面是导入图片的代码: import os images = [] for filename i
关于预测的快速问题。 我尝试预测的值是 0 或 1(它设置为数字,而不是因子),因此当我运行随机森林时: fit , data=trainData, ntree=50) 并预测: pred, data
使用 Python,我尝试使用历史销售数据来预测产品的 future 销售数量。我还试图预测各组产品的这些计数。 例如,我的专栏如下所示: Date Sales_count Department It
我是 R 新手,所以请帮助我了解问题所在。我试图预测一些数据,但预测函数返回的对象(这是奇怪的类(因子))包含低数据。测试集大小为 5886 obs。 160 个变量,当预测对象长度为 110 时..
关闭。这个问题需要更多focused .它目前不接受答案。 想改进这个问题吗? 更新问题,使其只关注一个问题 editing this post . 关闭 6 年前。 Improve this qu
下面是我的神经网络代码,有 3 个输入和 1 个隐藏层和 1 个输出: #Data ds = SupervisedDataSet(3,1) myfile = open('my_file.csv','r
我正在开发一个 Web 应用程序,它具有全文搜索功能,可以正常运行。我想对此进行改进并向其添加预测/更正功能,这意味着如果用户输入错误或结果为 0,则会查询该输入的更正版本,而不是查询结果。基本上类似
我对时间序列还很陌生。 这是我正在处理的数据集: Date Price Location 0 2012-01-01 1771.0
我有许多可变长度的序列。对于这些,我想训练一个隐马尔可夫模型,稍后我想用它来预测(部分)序列的可能延续。到目前为止,我已经找到了两种使用 HMM 预测 future 的方法: 1) 幻觉延续并获得该延
我正在使用 TensorFlow 服务提供初始模型。我在 Azure Kubernetes 上这样做,所以不是通过更标准和有据可查的谷歌云。 无论如何,这一切都在起作用,但是我感到困惑的是预测作为浮点
我正在尝试使用 Amazon Forecast 进行一些测试。我现在尝试了两个不同的数据集,它们看起来像这样: 13,2013-03-31 19:25:00,93.10999 14,2013-03-3
使用 numpy ndarray大多数时候我们不需要担心内存布局的问题,因为结果并不依赖于它。 除非他们这样做。例如,考虑这种设置 3x2 矩阵对角线的稍微过度设计的方法 >>> a = np.zer
我想在同一个地 block 上用不同颜色绘制多个预测,但是,比例尺不对。我对任何其他方法持开放态度。 可重现的例子: require(forecast) # MAKING DATA data
我正在 R 中使用 GLMM,其中混合了连续变量和 calcategories 变量,并具有一些交互作用。我使用 MuMIn 中的 dredge 和 model.avg 函数来获取每个变量的效果估计。
我能够在 GUI 中成功导出分类器错误,但无法在命令行中执行此操作。有什么办法可以在命令行上完成此操作吗? 我使用的是 Weka 3.6.x。在这里,您可以右键单击模型,选择“可视化分类器错误”并从那
我想在同一个地 block 上用不同颜色绘制多个预测,但是,比例尺不对。我对任何其他方法持开放态度。 可重现的例子: require(forecast) # MAKING DATA data
我从 UCI 机器学习数据集库下载了一个巨大的文件。 (~300mb)。 有没有办法在将数据集加载到 R 内存之前预测加载数据集所需的内存? Google 搜索了很多,但我到处都能找到如何使用 R-p
我是一名优秀的程序员,十分优秀!