gpt4 book ai didi

python - 具有多种特征的多步时间序列预测

转载 作者:行者123 更新时间:2023-11-30 08:58:35 24 4
gpt4 key购买 nike

所以我处于机器学习的初级水平,我想预测时间序列的多个样本。该时间序列包含每 15 分钟一次的样本,我必须预测接下来 3 天的样本。 future 大约有 288 个样本。

我的时间序列还具有其他分类特征,因此我基于 this 实现了一个模型回答。

我读到了有关 seq2seq 时间序列预测的编码器-解码器的信息。但不太了解如何实现它并将其与多个分类特征相结合。

  1. 遵循这个答案,我的方向正确吗?
  2. 即使对于 Y 的大维度(在我的例子中是 future 288 个时间步长),LSTM 也能正常工作吗?
  3. 我将过去 7 天的样本视为 X,因此我的 lstm 输入形状为(样本数,672, 1)。这样可以吗?
  4. 我应该选择编码器-解码器吗?如果是的话,那么任何人都可以为我提供更多见解,也许还有一个很好的教程。

提前致谢。

最佳答案

  1. 是的。
  2. 取决于您拥有的数据量以及您的问题的可学习性。
  3. 您使用的数据越多越好。
  4. 编码器-解码器架构只是“前馈隐藏的 LSTM 状态”的一个奇特名称。我不明白为什么您需要在您的案例中使用它。

关于python - 具有多种特征的多步时间序列预测,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/49726971/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com