gpt4 book ai didi

tensorflow - 为什么 Spark ML 感知器分类器具有很高的 F1 分数,而相同的模型在 TensorFlow 上表现却很差?

转载 作者:行者123 更新时间:2023-11-30 08:57:38 25 4
gpt4 key购买 nike

我们的团队正在研究 NLP 问题。我们有一个包含一些标记句子的数据集,我们必须将它们分为两类:0 或 1。

我们对数据进行预处理并使用词嵌入,以便每个句子都有 300 个特征,然后我们使用简单的神经网络来训练模型。

由于数据非常倾斜,我们使用 F1 分数来衡量模型分数,并在训练集 (80%) 和测试集 (20%) 上进行计算。

Spark

我们使用了multilayer perceptron classifier PySpark 的 MLlib 中的特色功能:

layers = [300, 600, 2]

trainer = MultilayerPerceptronClassifier(featuresCol='features', labelCol='target',
predictionCol='prediction', maxIter=10, layers=layers,
blockSize=128)
model = trainer.fit(train_df)
result = model.transform(test_df)

predictionAndLabels = result.select("prediction", "target").withColumnRenamed("target", "label")
evaluator = MulticlassClassificationEvaluator(metricName="f1")
f1_score = evaluator.evaluate(predictionAndLabels)

这样我们就可以得到介于 0.91 和 0.93 之间的 F1 分数。

TensorFlow

然后我们选择切换(主要是为了学习目的)到 TensorFlow,因此我们使用与 MLlib 相同的架构和公式实现了一个神经网络:

# Network Parameters
n_input = 300
n_hidden_1 = 600
n_classes = 2

# TensorFlow graph input
features = tf.placeholder(tf.float32, shape=(None, n_input), name='inputs')
labels = tf.placeholder(tf.float32, shape=(None, n_classes), name='labels')

# Initializes weights and biases
init_biases_and_weights()

# Layers definition
layer_1 = tf.add(tf.matmul(features, weights['h1']), biases['b1'])
layer_1 = tf.nn.sigmoid(layer_1)

out_layer = tf.matmul(layer_1, weights['out']) + biases['out']
out_layer = tf.nn.softmax(out_layer)

# Optimizer definition
learning_rate_ph = tf.placeholder(tf.float32, shape=(), name='learning_rate')
loss_function = tf.losses.log_loss(labels=labels, predictions=out_layer)
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate_ph).minimize(loss_function)

# Start TensorFlow session
init = tf.global_variables_initializer()
tf_session = tf.InteractiveSession()
tf_session.run(init)

# Train Neural Network
learning_rate = 0.01
iterations = 100
batch_size = 256

total_batch = int(len(y_train) / batch_size)
for epoch in range(iterations):
avg_cost = 0.0
for block in range(total_batch):
batch_x = x_train[block * batch_size:min(block * batch_size + batch_size, len(x_train)), :]
batch_y = y_train[block * batch_size:min(block * batch_size + batch_size, len(y_train)), :]
_, c = tf_session.run([optimizer, loss_function], feed_dict={learning_rate_ph: learning_rate,
features: batch_x,
labels: batch_y})
avg_cost += c
avg_cost /= total_batch
print("Iteration " + str(epoch + 1) + " Logistic-loss=" + str(avg_cost))

# Make predictions
predictions_train = tf_session.run(out_layer, feed_dict={features: x_train, labels: y_train})
predictions_test = tf_session.run(out_layer, feed_dict={features: x_test, labels: y_test})

# Compute F1-score
f1_score = f1_score_tf(y_test, predictions_test)

支持功能:

def initialize_weights_and_biases():
global weights, biases
epsilon_1 = sqrt(6) / sqrt(n_input + n_hidden_1)
epsilon_2 = sqrt(6) / sqrt(n_classes + n_hidden_1)
weights = {
'h1': tf.Variable(tf.random_uniform([n_input, n_hidden_1],
minval=0 - epsilon_1, maxval=epsilon_1, dtype=tf.float32)),
'out': tf.Variable(tf.random_uniform([n_hidden_1, n_classes],
minval=0 - epsilon_2, maxval=epsilon_2, dtype=tf.float32))
}
biases = {
'b1': tf.Variable(tf.constant(1, shape=[n_hidden_1], dtype=tf.float32)),
'out': tf.Variable(tf.constant(1, shape=[n_classes], dtype=tf.float32))
}

def f1_score_tf(actual, predicted):
actual = np.argmax(actual, 1)
predicted = np.argmax(predicted, 1)

tp = tf.count_nonzero(predicted * actual)
fp = tf.count_nonzero(predicted * (actual - 1))
fn = tf.count_nonzero((predicted - 1) * actual)
precision = tp / (tp + fp)
recall = tp / (tp + fn)

f1 = 2 * precision * recall / (precision + recall)
return tf.Tensor.eval(f1)

这样我们就可以得到介于 0.24 和 0.25 之间的 F1 分数。

问题

我可以看到这两个神经网络之间的唯一区别是:

  • 优化器:Spark 中的 L-BFGS、TensorFlow 中的梯度下降
  • 权重和偏差初始化:Spark 进行自己的初始化,而我们在 TensorFlow 中手动初始化它们

我不认为这两个参数会导致模型之间的性能差异如此之大,但 Spark 似乎仍然在很少的迭代中获得了非常高的分数。

我不明白 TensorFlow 的表现是否非常糟糕,或者 Spark 的分数是否不真实。在这两种情况下,我认为我们没有看到重要的东西。

最佳答案

将权重初始化为统一且偏置为 1 当然不是一个好主意,而且很可能是造成这种差异的原因。

使用 normaltruncated_normal 代替,默认值为零均值和 small variance对于权重:

weights = {
'h1': tf.Variable(tf.truncated_normal([n_input, n_hidden_1],
stddev=0.01, dtype=tf.float32)),
'out': tf.Variable(tf.truncated_normal([n_hidden_1, n_classes],
stddev=0.01, dtype=tf.float32))
}

偏差:

biases = {
'b1': tf.Variable(tf.constant(0, shape=[n_hidden_1], dtype=tf.float32)),
'out': tf.Variable(tf.constant(0, shape=[n_classes], dtype=tf.float32))
}

也就是说,我不确定使用 MulticlassClassificationEvaluator 解决二元分类问题的正确性,我建议进行一些进一步的手动检查,以确认该函数确实返回您认为的结果返回...

关于tensorflow - 为什么 Spark ML 感知器分类器具有很高的 F1 分数,而相同的模型在 TensorFlow 上表现却很差?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/53559043/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com