- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一个简单的 nn
模型,如下所示
class TestRNN(nn.Module):
def __init__(self, batch_size, n_steps, n_inputs, n_neurons, n_outputs):
super(TestRNN, self).__init__()
...
self.basic_rnn = nn.RNN(self.n_inputs, self.n_neurons)
self.FC = nn.Linear(self.n_neurons, self.n_outputs)
def forward(self, X):
...
lstm_out, self.hidden = self.basic_rnn(X, self.hidden)
out = self.FC(self.hidden)
return out.view(-1, self.n_outputs)
我正在使用criterion = nn.CrossEntropyLoss()
来计算我的错误。操作顺序如下:
# get the inputs
x, y = data
# forward + backward + optimize
outputs = model(x)
loss = criterion(outputs, y)
我的训练数据 x
已标准化,如下所示:
tensor([[[7.0711e-01, 7.0711e-01, 0.0000e+00, ..., 0.0000e+00,
0.0000e+00, 0.0000e+00],
[2.6164e-02, 2.6164e-02, 0.0000e+00, ..., 0.0000e+00,
0.0000e+00, 1.3108e-05],
[7.0711e-01, 7.0711e-01, 0.0000e+00, ..., 0.0000e+00,
0.0000e+00, 0.0000e+00],
[9.5062e-01, 3.1036e-01, 0.0000e+00, ..., 0.0000e+00,
0.0000e+00, 0.0000e+00],
[0.0000e+00, 1.3717e-05, 3.2659e-07, ..., 0.0000e+00,
0.0000e+00, 3.2659e-07]],
[[5.1934e-01, 5.4041e-01, 6.8083e-06, ..., 0.0000e+00,
0.0000e+00, 6.8083e-06],
[5.2340e-01, 6.0007e-01, 2.7062e-06, ..., 0.0000e+00,
0.0000e+00, 2.7062e-06],
[8.1923e-01, 5.7346e-01, 0.0000e+00, ..., 0.0000e+00,
0.0000e+00, 0.0000e+00],
[7.0711e-01, 7.0711e-01, 0.0000e+00, ..., 0.0000e+00,
0.0000e+00, 0.0000e+00],
[7.0711e-01, 7.0711e-01, 0.0000e+00, ..., 0.0000e+00,
0.0000e+00, 0.0000e+00]],
[[7.0711e-01, 7.0711e-01, 0.0000e+00, ..., 0.0000e+00,
0.0000e+00, 0.0000e+00],
[7.0714e-01, 7.0708e-01, 0.0000e+00, ..., 0.0000e+00,
0.0000e+00, 0.0000e+00],
[7.0711e-01, 7.0711e-01, 0.0000e+00, ..., 0.0000e+00,
0.0000e+00, 0.0000e+00],
[7.0711e-01, 7.0711e-01, 0.0000e+00, ..., 0.0000e+00,
0.0000e+00, 7.0407e-06],
[7.0711e-01, 7.0711e-01, 0.0000e+00, ..., 0.0000e+00,
0.0000e+00, 0.0000e+00]],
...,
[[7.0711e-01, 7.0711e-01, 0.0000e+00, ..., 0.0000e+00,
0.0000e+00, 0.0000e+00],
[7.1852e-01, 2.3411e-02, 0.0000e+00, ..., 0.0000e+00,
0.0000e+00, 0.0000e+00],
[7.0775e-01, 7.0646e-01, 0.0000e+00, ..., 0.0000e+00,
0.0000e+00, 3.9888e-06],
[7.0711e-01, 7.0711e-01, 0.0000e+00, ..., 0.0000e+00,
0.0000e+00, 0.0000e+00],
[7.0711e-01, 7.0711e-01, 0.0000e+00, ..., 0.0000e+00,
0.0000e+00, 0.0000e+00]],
[[5.9611e-01, 5.8796e-01, 0.0000e+00, ..., 0.0000e+00,
0.0000e+00, 0.0000e+00],
[7.0711e-01, 7.0710e-01, 0.0000e+00, ..., 0.0000e+00,
0.0000e+00, 0.0000e+00],
[7.7538e-01, 2.4842e-01, 1.7787e-06, ..., 0.0000e+00,
0.0000e+00, 1.7787e-06],
[7.0711e-01, 7.0711e-01, 0.0000e+00, ..., 0.0000e+00,
0.0000e+00, 0.0000e+00],
[7.0711e-01, 7.0711e-01, 0.0000e+00, ..., 0.0000e+00,
0.0000e+00, 0.0000e+00]],
[[5.2433e-01, 5.2433e-01, 0.0000e+00, ..., 0.0000e+00,
0.0000e+00, 0.0000e+00],
[7.0711e-01, 7.0711e-01, 0.0000e+00, ..., 0.0000e+00,
0.0000e+00, 0.0000e+00],
[1.3155e-01, 1.3155e-01, 0.0000e+00, ..., 8.6691e-02,
9.7871e-01, 0.0000e+00],
[7.4412e-01, 6.6311e-01, 0.0000e+00, ..., 0.0000e+00,
0.0000e+00, 0.0000e+00],
[7.0711e-01, 7.0711e-01, 0.0000e+00, ..., 0.0000e+00,
0.0000e+00, 9.6093e-07]]])
传递给标准函数的典型输出
和y
如下所示:
tensor([[-0.0513],
[-0.0445],
[-0.0514],
[-0.0579],
[-0.0539],
[-0.0323],
[-0.0521],
[-0.0294],
[-0.0372],
[-0.0518],
[-0.0516],
[-0.0501],
[-0.0312],
[-0.0496],
[-0.0436],
[-0.0514],
[-0.0518],
[-0.0465],
[-0.0530],
[-0.0471],
[-0.0344],
[-0.0502],
[-0.0536],
[-0.0594],
[-0.0356],
[-0.0371],
[-0.0513],
[-0.0528],
[-0.0621],
[-0.0404],
[-0.0403],
[-0.0562],
[-0.0510],
[-0.0580],
[-0.0516],
[-0.0556],
[-0.0063],
[-0.0459],
[-0.0494],
[-0.0460],
[-0.0631],
[-0.0525],
[-0.0454],
[-0.0509],
[-0.0522],
[-0.0426],
[-0.0527],
[-0.0423],
[-0.0572],
[-0.0308],
[-0.0452],
[-0.0555],
[-0.0479],
[-0.0513],
[-0.0514],
[-0.0498],
[-0.0514],
[-0.0471],
[-0.0505],
[-0.0467],
[-0.0485],
[-0.0520],
[-0.0517],
[-0.0442]], device='cuda:0', grad_fn=<ViewBackward>)
tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], device='cuda:0')
当应用该标准时,我收到以下错误(使用 CUDA_LAUNCH_BLOCKING=1 运行):
/opt/conda/conda-bld/pytorch_1549628766161/work/aten/src/THCUNN/ClassNLLCriterion.cu:105: void cunn_ClassNLLCriterion_updateOutput_kernel(Dtype *, Dtype *, Dtype *, long *, Dtype *, int, int, int, int, long) [with Dtype = float, Acctype = float]: block: [0,0,0], thread: [7,0,0] Assertion `t >= 0 && t < n_classes` failed.
/opt/conda/conda-bld/pytorch_1549628766161/work/aten/src/THCUNN/ClassNLLCriterion.cu:105: void cunn_ClassNLLCriterion_updateOutput_kernel(Dtype *, Dtype *, Dtype *, long *, Dtype *, int, int, int, int, long) [with Dtype = float, Acctype = float]: block: [0,0,0], thread: [20,0,0] Assertion `t >= 0 && t < n_classes` failed.
THCudaCheck FAIL file=/opt/conda/conda-bld/pytorch_1549628766161/work/aten/src/THCUNN/generic/ClassNLLCriterion.cu line=111 error=59 : device-side assert triggered
我的模型输出负值导致出现上述错误消息,我该如何解决此问题?
最佳答案
TL;DR
您有两个选择:
outputs
的第二个维度尺寸为 2 而不是 1。nn.BCEWithLogitsLoss
而不是nn.CrossEntropyLoss
我认为问题不在于负数。其形状为outputs
.
查看您的数组 y
,我看到你有 2 个不同的类(也许更多,但我们假设它是 2 个)。这意味着 outputs
的最后一个维度应该是2。原因是outputs
需要为 2 个不同类别中的每一个类别给出“分数”(请参阅 the documentation )。分数可以是负数、零或正数。但你的形状outputs
是 [64,1]
,而不是[64,2]
根据需要。
nn.CrossEntropyLoss()
的步骤之一目标是将这些分数转换为两个类别的概率分布。这是使用 softmax 运算完成的。然而,在进行二元分类时(即只有 2 个类的分类,如我们当前的情况),还有另一种选择:仅给出一个类的分数,使用 sigmoid 函数将其转换为该类的概率,然后然后对此执行“1-p”以获得其他类别的概率。此选项意味着 outputs
只需要为两个类别中的一个给出分数,就像您当前的情况一样。要选择此选项,您需要更改 nn.CrossEntropyLoss
与 nn.BCEWithLogitsLoss
。然后您可以传递给它 outputs
和y
正如您当前所做的那样(但请注意, outputs
的形状需要恰好是 y
的形状,因此在您的示例中,您需要传递 outputs[:,0]
而不是 outputs
。此外,您还需要转换y
到 float : y.float()
。因此调用是 criterion(outputs[:,0], y.float())
)
关于python - 处理我的神经网络模型产生的负值,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/54870863/
我在 Chrome 上做了一些测试,requestAnimationFrame 产生了 61 fps 而 setTimeOut( callback, 0 ) 产生了 233 fps。 如果一个人想要超
当我调试代码时,我发现 GCC 和 Clang 都为 0.0/0.0 产生 nan,这是我所期望的,但 GCC 产生的 nan 将符号位设置为 1,而Clang 将其设置为 0(如果我没记错的话,与
Closed. This question does not meet Stack Overflow guidelines。它当前不接受答案。 想改善这个问题吗?更新问题,以便将其作为on-topic
我在 R Studio 中有一个时间序列。现在我想计算这个系列的log()。我尝试了以下方法: i <- (x-y) ii <- log(i) 但是我得到以下信息:Warning message: I
我有兴趣了解 JavaScript 的内部结构.我试图阅读 SpiderMonkey 的来源和 Rhino但是绕过我的头是相当复杂的。 我问的原因是:为什么像 (![]+[])[+!![]+[]] 生
我们在 Delphi 中使用标准 TWebbrowser 组件,该组件在内部使用 mshtml.dll。另外,我们使用注册表来确保页面使用新的渲染引擎( Web-Browser-Control-Spe
我必须实现一个序列化/反序列化类,并且我正在使用 System.Xml.Serialization 。我有一些IList类型属性并希望在 IList 中序列化解码属于具有特定区域性信息的列表的所有十进
我有一个 Java 应用程序,它读取包含 SQL 查询的 JSON 文件,并使用 JDBC 在数据库上触发它们。 现在我有 5 万个这样的文件,我需要生成 5 万个独立线程来读取每个文件并将它们上传到
我正在尝试将 TensorFlow 入门页面上的示例线性回归程序调整为二次回归。为此,我只是添加了另一个变量并更改了函数。然而,这似乎会导致 NaN 值。这是我的代码: import numpy as
申请后KernelPCA到我的数据并将其传递给分类器 ( SVC ) 我收到以下错误: ValueError: Input contains NaN, infinity or a value too
这背后的想法是,如果我的数据库中存在登录名(正确的用户名+密码),我将重定向到一个页面,并且在进行此身份验证后,他们可以将消息存储在文本文件中。代码非常简单尽管我不确定为什么会收到 IllegalSt
我有一个返回 log10 值的函数。在将它们转换为正常数字时,出现溢出错误。 OverflowError: (34, 'Numerical result out of range') 我检查了日志值,
nosetests 抛出一个 ImportError,尽管我认为这是一个正确配置的 virtualenv。 ==============================================
我是这个网站的新手,所以如果我做错了什么,我提前道歉。当我尝试使用 kivy-garden 的 ScrollLabel 时,它给了我一个错误。基本上我正在尝试创建一个控制台日志,并且我需要能够在文本框
任何人都对 MDSJ 有任何经验?以下输入仅产生 NaN 结果,我不明白为什么。文档非常稀少。 import mdsj.Data; import mdsj.MDSJ; public class MDS
我有一个非常简单的 scala jcuda 程序,它添加了一个非常大的数组。一切都编译和运行得很好,直到我想从我的设备复制超过 4 个字节到主机。当我尝试复制超过 4 个字节时,我收到 CUDA_ER
我正在使用 Hero 组件在两个页面之间创建动画。Hero 组件用于包装一个 Image 小部件(没问题)和一个 Container 小部件(有问题)。 抛出以下溢出错误: ══╡ EXCEPTIO
我无法理解页面 https://developer.mozilla.org/en/JavaScript/Reference/Operators/Special/void 中的这一段: This ope
当在 Angular 中使用不立即触发事件的异步管道时(http 请求或任何有延迟的可观察对象),第一个值为 null为什么会这样?如何避免这种情况? 第一个变化: SimpleChange {
如果一个导入的库生成了一个会 panic 的 goroutine 怎么办?在这种情况下,开发人员无法阻止程序退出。 就像在这段代码中一样,使用延迟恢复调用一个错误的库没有帮助,因为该库正在生成一个 p
我是一名优秀的程序员,十分优秀!