- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我一直在考虑单词序列的 0 填充以及如何将 0 填充转换为嵌入层。乍一看,人们会认为您也希望保持嵌入 = 0.0。但是,keras 中的嵌入层会为任何输入标记生成随机值,并且无法强制其生成 0.0。请注意,mask_zero
做了一些不同的事情,我已经检查过了。
有人可能会问,为什么要担心这个,即使嵌入不是 0.0,只要它们相同,代码似乎也可以工作。所以我想出了一个例子,尽管有些做作,其中将 0 填充 token 的嵌入设置为 0.0 会产生影响。
我使用了 20 个新闻组数据集 from sklearn.datasets import fetch_20newsgroups
。我做了一些最少的预处理:删除标点符号、停用词和数字。我使用 from keras.preprocessing.sequence import pad_sequences
进行 0 填充。我将 ~18K 帖子分为训练集和验证集,训练/验证的比例 = 4/1。我创建了一个简单的 1 密集隐藏层网络,输入是扁平化的嵌入序列:
EMBEDDING_DIM = 300
MAX_SEQUENCE_LENGTH = 1100
layer_size = 25
dropout = 0.3
sequence_input = Input(shape=(MAX_SEQUENCE_LENGTH,), dtype='int32', name='dnn_input')
embedding_layer = Embedding(len(word_index) + 1, EMBEDDING_DIM, input_length=MAX_SEQUENCE_LENGTH, name = 'embedding_dnn')
embedded_sequences = embedding_layer(sequence_input)
x = Flatten(name='flatten_dnn')(embedded_sequences)
x = Dense(layer_size, activation='relu', name ='hidden_dense_dnn')(x)
x = Dropout(dropout, name='dropout')(x)
preds = Dense(num_labels, activation='softmax', name = 'output_dnn')(x)
model = Model(sequence_input, preds)
model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy'])
该模型具有大约 14M 个可训练参数(正如我已经提到的,这个示例有点做作)。当我训练它时
earlystop = EarlyStopping(monitor='val_loss', patience=5)
history = model.fit(x_train, y_train, validation_data=(x_test, y_test), epochs=30, batch_size=BATCH_SIZE, callbacks=[earlystop])
看起来算法在 4 个时期内都在努力寻找摆脱“随机性”的方法:
Train on 15048 samples, validate on 3798 samples
Epoch 1/30
15048/15048 [==============================] - 58s 4ms/step - loss: 3.1118 - acc: 0.0519 - val_loss: 2.9894 - val_acc: 0.0534
Epoch 2/30
15048/15048 [==============================] - 56s 4ms/step - loss: 2.9820 - acc: 0.0556 - val_loss: 2.9827 - val_acc: 0.0527
Epoch 3/30
15048/15048 [==============================] - 55s 4ms/step - loss: 2.9712 - acc: 0.0626 - val_loss: 2.9718 - val_acc: 0.0579
Epoch 4/30
15048/15048 [==============================] - 55s 4ms/step - loss: 2.9259 - acc: 0.0756 - val_loss: 2.8363 - val_acc: 0.0874
Epoch 5/30
15048/15048 [==============================] - 56s 4ms/step - loss: 2.7092 - acc: 0.1390 - val_loss: 2.3251 - val_acc: 0.2796
...
Epoch 13/30
15048/15048 [==============================] - 56s 4ms/step - loss: 0.0698 - acc: 0.9807 - val_loss: 0.5010 - val_acc: 0.8736
最终的准确度约为 0.87
print ('Best validation accuracy is ', max(history.history['val_acc']))
Best validation accuracy is 0.874934175379845
但是,当我将填充的 0 的嵌入明确设置为 0.0
def myMask(x):
mask= K.greater(x,0) #will return boolean values
mask= K.cast(mask, dtype=K.floatx())
return mask
layer_size = 25
dropout = 0.3
sequence_input = Input(shape=(MAX_SEQUENCE_LENGTH,), dtype='int32', name='dnn_input')
embedding_layer = Embedding(len(word_index) + 1, EMBEDDING_DIM, input_length=MAX_SEQUENCE_LENGTH, name = 'embedding_dnn')
embedded_sequences = embedding_layer(sequence_input)
y = Lambda(myMask, output_shape=(MAX_SEQUENCE_LENGTH,))(sequence_input)
y = Reshape(target_shape=(MAX_SEQUENCE_LENGTH,1))(y)
merge_layer = Multiply(name = 'masked_embedding_dnn')([embedded_sequences,y])
x = Flatten(name='flatten_dnn')(merge_layer)
x = Dense(layer_size, activation='relu', name ='hidden_dense_dnn')(x)
x = Dropout(dropout, name='dropout')(x)
preds = Dense(num_labels, activation='softmax', name = 'output_dnn')(x)
model = Model(sequence_input, preds)
model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy'])
具有相同数量参数的模型立即摆脱“随机性”:
Train on 15048 samples, validate on 3798 samples
Epoch 1/30
15048/15048 [==============================] - 64s 4ms/step - loss: 2.4356 - acc: 0.3060 - val_loss: 1.2424 - val_acc: 0.7754
Epoch 2/30
15048/15048 [==============================] - 61s 4ms/step - loss: 0.6973 - acc: 0.8267 - val_loss: 0.5240 - val_acc: 0.8797
...
Epoch 10/30
15048/15048 [==============================] - 61s 4ms/step - loss: 0.0496 - acc: 0.9881 - val_loss: 0.4176 - val_acc: 0.8944
最终的准确度更高,约为 0.9。
这又是一个有些人为的示例,但它仍然表明将这些“填充”嵌入保持在 0.0 可能是有益的。
我在这里遗漏了什么吗?如果我没有遗漏任何东西,那么 Keras 不提供开箱即用的功能的原因是什么?
UPDATE
@DanielMöller 我尝试了你的建议:
layer_size = 25
dropout = 0.3
init = RandomUniform(minval=0.0001, maxval=0.05, seed=None)
constr = NonNeg()
sequence_input = Input(shape=(MAX_SEQUENCE_LENGTH,), dtype='int32', name='dnn_input')
embedding_layer = Embedding(len(word_index) + 1,
EMBEDDING_DIM,
input_length=MAX_SEQUENCE_LENGTH,
name = 'embedding_dnn',
embeddings_initializer=init,
embeddings_constraint=constr)
embedded_sequences = embedding_layer(sequence_input)
y = Lambda(myMask, output_shape=(MAX_SEQUENCE_LENGTH,))(sequence_input)
y = Reshape(target_shape=(MAX_SEQUENCE_LENGTH,1))(y)
merge_layer = Multiply(name = 'masked_embedding_dnn')([embedded_sequences,y])
x = Flatten(name='flatten_dnn')(merge_layer)
x = Dense(layer_size, activation='relu', name ='hidden_dense_dnn')(x)
x = Dropout(dropout, name='dropout')(x)
preds = Dense(num_labels, activation='softmax', name = 'output_dnn')(x)
model = Model(sequence_input, preds)
model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy'])
不幸的是,网络陷入了“随机性”:
Train on 15197 samples, validate on 3649 samples
Epoch 1/30
15197/15197 [==============================] - 60s 4ms/step - loss: 3.1354 - acc: 0.0505 - val_loss: 2.9943 - val_acc: 0.0496
....
Epoch 24/30
15197/15197 [==============================] - 60s 4ms/step - loss: 2.9905 - acc: 0.0538 - val_loss: 2.9907 - val_acc: 0.0496
我也尝试过没有 NonNeg()
约束,结果相同。
最佳答案
好吧,您将消除与填充步骤相关的权重梯度的计算。
如果你有太多的填充步骤,那么关于填充值的嵌入权重将参与大量计算,并且将与其他权重显着竞争。但训练这些权重是一种计算浪费,换句话说肯定会产生干扰。
例如,还要考虑一些填充权重的值可能介于有意义的单词的值之间。因此,增加权重可能会使其与另一个单词相似,而实际上并非如此。并且也在减少......
这些额外的计算、对损失和梯度计算的额外贡献等将产生更多的计算需求和更多的障碍。这就像数据中间有很多垃圾。
还请注意,这些零将直接进入密集层,这也将消除许多密集权重的梯度。如果较长的序列与较短的序列相比较少,则这可能会过度拟合。
<小时/>出于好奇,如果你这样做会发生什么?
from keras.initializers import RandomUniform
from keras.constraints import NonNeg
init = RandomUniform(minval=0.0001, maxval=0.05, seed=None)
constr = NonNeg()
......
embedding_layer = Embedding(len(word_index) + 1,
EMBEDDING_DIM,
input_length=MAX_SEQUENCE_LENGTH,
name = 'embedding_dnn',
embeddings_initializer=init,
embeddings_constraint=constr)
..........
关于machine-learning - Keras嵌入层: keep zero-padded values as zeros,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56798308/
基本上,我的问题是,由于无监督学习是机器学习的一种,是否需要机器“学习”的某些方面并根据其发现进行改进?例如,如果开发了一种算法来获取未标记的图像并找到它们之间的关联,那么它是否需要根据这些关联来改进
生成模型和判别模型似乎可以学习条件 P(x|y) 和联合 P(x,y) 概率分布。但从根本上讲,我无法说服自己“学习概率分布”意味着什么。 最佳答案 这意味着您的模型要么充当训练样本的分布估计器,要么
是否有类似于 的 scikit-learn 方法/类元成本 在 Weka 或其他实用程序中实现的算法以执行常量敏感分析? 最佳答案 不,没有。部分分类器提供 class_weight和 sample_
是否Scikit-learn支持迁移学习?请检查以下代码。 型号 clf由 fit(X,y) 获取 jar 头型号clf2在clf的基础上学习和转移学习 fit(X2,y2) ? >>> from s
我发现使用相同数据的两种交叉验证技术之间的分类性能存在差异。我想知道是否有人可以阐明这一点。 方法一:cross_validation.train_test_split 方法 2:分层折叠。 具有相同
我正在查看 scikit-learn 文档中的这个示例:http://scikit-learn.org/0.18/auto_examples/model_selection/plot_nested_c
我想训练一个具有很多标称属性的数据集。我从一些帖子中注意到,要转换标称属性必须将它们转换为重复的二进制特征。另外据我所知,这样做在概念上会使数据集稀疏。我也知道 scikit-learn 使用稀疏矩阵
我正在尝试在 scikit-learn (sklearn.feature_selection.SelectKBest) 中通过卡方方法进行特征选择。当我尝试将其应用于多标签问题时,我收到此警告: 用户
有几种算法可以构建决策树,例如 CART(分类和回归树)、ID3(迭代二分法 3)等 scikit-learn 默认使用哪种决策树算法? 当我查看一些决策树 python 脚本时,它神奇地生成了带有
我正在尝试在 scikit-learn (sklearn.feature_selection.SelectKBest) 中通过卡方方法进行特征选择。当我尝试将其应用于多标签问题时,我收到此警告: 用户
有几种算法可以构建决策树,例如 CART(分类和回归树)、ID3(迭代二分法 3)等 scikit-learn 默认使用哪种决策树算法? 当我查看一些决策树 python 脚本时,它神奇地生成了带有
有没有办法让 scikit-learn 中的 fit 方法有一个进度条? 是否可以包含自定义的类似 Pyprind 的内容? ? 最佳答案 如果您使用 verbose=1 初始化模型调用前 fit你应
我正在使用基于 rlglue 的 python-rl q 学习框架。 我的理解是,随着情节的发展,算法会收敛到一个最优策略(这是一个映射,说明在什么状态下采取什么行动)。 问题 1:这是否意味着经过若
我正在尝试使用 grisSearchCV 在 scikit-learn 中拟合一些模型,并且我想使用“一个标准错误”规则来选择最佳模型,即从分数在 1 以内的模型子集中选择最简约的模型最好成绩的标准误
我正在尝试离散数据以进行分类。它们的值是字符串,我将它们转换为数字 0,1,2,3。 这就是数据的样子(pandas 数据框)。我已将数据帧拆分为 dataLabel 和 dataFeatures L
每当我开始拥有更多的类(1000 或更多)时,MultinominalNB 就会变得非常慢并且需要 GB 的 RAM。对于所有支持 .partial_fit()(SGDClassifier、Perce
我需要使用感知器算法来研究一些非线性可分数据集的学习率和渐近误差。 为了做到这一点,我需要了解构造函数的一些参数。我花了很多时间在谷歌上搜索它们,但我仍然不太明白它们的作用或如何使用它们。 给我带来更
我知道作为功能 ordinal data could be assigned arbitrary numbers and OneHotEncoding could be done for catego
这是一个示例,其中有逐步的过程使系统学习并对输入数据进行分类。 它对给定的 5 个数据集域进行了正确分类。此外,它还对停用词进行分类。 例如 输入:docs_new = ['上帝就是爱', '什么在哪
我有一个 scikit-learn 模型,它简化了一点,如下所示: clf1 = RandomForestClassifier() clf1.fit(data_training, non_binary
我是一名优秀的程序员,十分优秀!