- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一个包含 1025 个输入和 14 列的数据。首先,我通过将它们放在单独的表中来设置标签。
x = dataset.drop('label', axis=1)
y = dataset['label']
标签值只有 1 或 0。然后我使用以下方法分割数据:
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.30)
然后我制作我的分类器:
from sklearn.tree import DecisionTreeClassifier
classifier = DecisionTreeClassifier()
classifier.fit(X_train, y_train)
然后每当我制作决策树时,它都会变得太大:
from sklearn import tree
tree.plot_tree(classifier.fit(X_train, y_train))
结果输出 8 个级别,并且变得太大了。我认为这没问题,但在观察混淆矩阵和分类报告后:
from sklearn.metrics import classification_report, confusion_matrix
print(confusion_matrix(y_test, y_pred))
print(classification_report(y_test, y_pred))
其结果是:
[[155 3]
[ 3 147]]
precision recall f1-score support
0 0.98 0.98 0.98 158
1 0.98 0.98 0.98 150
accuracy 0.98 308
macro avg 0.98 0.98 0.98 308
weighted avg 0.98 0.98 0.98 308
高精度让我怀疑我的解决方案。我的代码有什么问题,如何降低决策树和准确性分数?
最佳答案
看起来您需要做的是检查以确保您的树没有过度拟合。使用决策树和 sklearn,我们可以通过两种主要方法来实现这一目标。
首先,您应该检查以确保您的树过度拟合。您可以使用验证曲线 ( see here ) 来做到这一点。
验证曲线的示例如下:
import numpy as np
from sklearn.model_selection import validation_curve
from sklearn.datasets import load_iris
from sklearn.linear_model import Ridge
np.random.seed(0)
X, y = load_iris(return_X_y=True)
indices = np.arange(y.shape[0])
np.random.shuffle(indices)
X, y = X[indices], y[indices]
train_scores, valid_scores = validation_curve(Ridge(), X, y, "alpha",
np.logspace(-7, 3, 3),
cv=5)
train_scores
valid_scores
一旦您确认您的树过度拟合,您需要执行名为 pruning
的操作,您可以使用 @e-zeytinci 提到的超参数优化来完成。您可以使用 GridSearchCV
来做到这一点
GridSearchCV 允许我们优化决策树或任何模型的超参数,以查看最大深度和最大节点等内容(这似乎是 OP 关注的问题),并且还帮助我们完成适当的修剪。
An example of that implementation can be read here
取自 this post 的工作代码示例集如下:
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import GridSearchCV
def dtree_grid_search(X,y,nfolds):
#create a dictionary of all values we want to test
param_grid = { 'criterion':['gini','entropy'],'max_depth': np.arange(3, 15)}
# decision tree model
dtree_model=DecisionTreeClassifier()
#use gridsearch to test all values
dtree_gscv = GridSearchCV(dtree_model, param_grid, cv=nfolds)
#fit model to data
dtree_gscv.fit(X, y)
return dtree_gscv.best_params_
或者,Random Forests can help with Decision Tree overfitting .
您可以实现 RandomForestClassifier
并遵循上面概述的相同超参数调整。
来自 this post 的示例如下:
from sklearn.grid_search import GridSearchCV
from sklearn.datasets import make_classification
from sklearn.ensemble import RandomForestClassifier
# Build a classification task using 3 informative features
X, y = make_classification(n_samples=1000,
n_features=10,
n_informative=3,
n_redundant=0,
n_repeated=0,
n_classes=2,
random_state=0,
shuffle=False)
rfc = RandomForestClassifier(n_jobs=-1,max_features= 'sqrt' ,n_estimators=50, oob_score = True)
param_grid = {
'n_estimators': [200, 700],
'max_features': ['auto', 'sqrt', 'log2']
}
CV_rfc = GridSearchCV(estimator=rfc, param_grid=param_grid, cv= 5)
CV_rfc.fit(X, y)
print CV_rfc.best_params_
关于python - 决策树太大 Scikit Learn,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/59306728/
基本上,我的问题是,由于无监督学习是机器学习的一种,是否需要机器“学习”的某些方面并根据其发现进行改进?例如,如果开发了一种算法来获取未标记的图像并找到它们之间的关联,那么它是否需要根据这些关联来改进
生成模型和判别模型似乎可以学习条件 P(x|y) 和联合 P(x,y) 概率分布。但从根本上讲,我无法说服自己“学习概率分布”意味着什么。 最佳答案 这意味着您的模型要么充当训练样本的分布估计器,要么
是否有类似于 的 scikit-learn 方法/类元成本 在 Weka 或其他实用程序中实现的算法以执行常量敏感分析? 最佳答案 不,没有。部分分类器提供 class_weight和 sample_
是否Scikit-learn支持迁移学习?请检查以下代码。 型号 clf由 fit(X,y) 获取 jar 头型号clf2在clf的基础上学习和转移学习 fit(X2,y2) ? >>> from s
我发现使用相同数据的两种交叉验证技术之间的分类性能存在差异。我想知道是否有人可以阐明这一点。 方法一:cross_validation.train_test_split 方法 2:分层折叠。 具有相同
我正在查看 scikit-learn 文档中的这个示例:http://scikit-learn.org/0.18/auto_examples/model_selection/plot_nested_c
我想训练一个具有很多标称属性的数据集。我从一些帖子中注意到,要转换标称属性必须将它们转换为重复的二进制特征。另外据我所知,这样做在概念上会使数据集稀疏。我也知道 scikit-learn 使用稀疏矩阵
我正在尝试在 scikit-learn (sklearn.feature_selection.SelectKBest) 中通过卡方方法进行特征选择。当我尝试将其应用于多标签问题时,我收到此警告: 用户
有几种算法可以构建决策树,例如 CART(分类和回归树)、ID3(迭代二分法 3)等 scikit-learn 默认使用哪种决策树算法? 当我查看一些决策树 python 脚本时,它神奇地生成了带有
我正在尝试在 scikit-learn (sklearn.feature_selection.SelectKBest) 中通过卡方方法进行特征选择。当我尝试将其应用于多标签问题时,我收到此警告: 用户
有几种算法可以构建决策树,例如 CART(分类和回归树)、ID3(迭代二分法 3)等 scikit-learn 默认使用哪种决策树算法? 当我查看一些决策树 python 脚本时,它神奇地生成了带有
有没有办法让 scikit-learn 中的 fit 方法有一个进度条? 是否可以包含自定义的类似 Pyprind 的内容? ? 最佳答案 如果您使用 verbose=1 初始化模型调用前 fit你应
我正在使用基于 rlglue 的 python-rl q 学习框架。 我的理解是,随着情节的发展,算法会收敛到一个最优策略(这是一个映射,说明在什么状态下采取什么行动)。 问题 1:这是否意味着经过若
我正在尝试使用 grisSearchCV 在 scikit-learn 中拟合一些模型,并且我想使用“一个标准错误”规则来选择最佳模型,即从分数在 1 以内的模型子集中选择最简约的模型最好成绩的标准误
我正在尝试离散数据以进行分类。它们的值是字符串,我将它们转换为数字 0,1,2,3。 这就是数据的样子(pandas 数据框)。我已将数据帧拆分为 dataLabel 和 dataFeatures L
每当我开始拥有更多的类(1000 或更多)时,MultinominalNB 就会变得非常慢并且需要 GB 的 RAM。对于所有支持 .partial_fit()(SGDClassifier、Perce
我需要使用感知器算法来研究一些非线性可分数据集的学习率和渐近误差。 为了做到这一点,我需要了解构造函数的一些参数。我花了很多时间在谷歌上搜索它们,但我仍然不太明白它们的作用或如何使用它们。 给我带来更
我知道作为功能 ordinal data could be assigned arbitrary numbers and OneHotEncoding could be done for catego
这是一个示例,其中有逐步的过程使系统学习并对输入数据进行分类。 它对给定的 5 个数据集域进行了正确分类。此外,它还对停用词进行分类。 例如 输入:docs_new = ['上帝就是爱', '什么在哪
我有一个 scikit-learn 模型,它简化了一点,如下所示: clf1 = RandomForestClassifier() clf1.fit(data_training, non_binary
我是一名优秀的程序员,十分优秀!