- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试使用在线( out-of-core) 学习算法来解决 MNIST 问题,使用 SGDClassifier但似乎准确率并不总是在增加。
这种情况我该怎么办?以某种方式保存最准确的分类器?SGDClassifier 是否收敛到某个最佳解决方案?
这是我的代码:
import numpy as np
from sklearn.linear_model.stochastic_gradient import SGDClassifier
from sklearn.datasets import fetch_mldata
from sklearn.utils import shuffle
#use all digits
mnist = fetch_mldata("MNIST original")
X_train, y_train = mnist.data[:70000] / 255., mnist.target[:70000]
X_train, y_train = shuffle(X_train, y_train)
X_test, y_test = X_train[60000:70000], y_train[60000:70000]
step =1000
batches= np.arange(0,60000,step)
all_classes = np.array([0,1,2,3,4,5,6,7,8,9])
classifier = SGDClassifier()
for curr in batches:
X_curr, y_curr = X_train[curr:curr+step], y_train[curr:curr+step]
classifier.partial_fit(X_curr, y_curr, classes=all_classes)
score= classifier.score(X_test, y_test)
print score
print "all done"
我在 MNIST 上测试了 LinearSVM 与 SGD,使用 10k 样本进行训练,10k 样本进行测试,得到 0.883 13,95 和 0.85 1,32,因此 SGD 速度更快,但准确性较低。
#test linearSVM vs SGD
t0 = time.time()
clf = LinearSVC()
clf.fit(X_train, y_train)
score= clf.score(X_test, y_test)
print score
print (time.time()-t0)
t1 = time.time()
clf = SGDClassifier()
clf.fit(X_train, y_train)
score= clf.score(X_test, y_test)
print score
print (time.time()-t1)
我还在这里找到了一些信息 https://stats.stackexchange.com/a/14936/16843
更新:超过一次(10次)通过数据达到了90.8%的最佳准确率。所以它可以是解决方案。 SGD 的另一个特点是数据在传递到分类器之前必须进行混洗。
最佳答案
第一条评论:您正在使用带有默认参数的 SGDClassifier
:它们可能不是此数据集的最佳值:也可以尝试其他值(特别是对于 alpha,正则化参数)。
现在回答你的问题,线性模型不太可能在像 MNIST 这样的数字图像分类任务数据集上表现得很好。您可能想尝试线性模型,例如:
SVC(kernel='rbf')
(但不可扩展,请尝试训练集的一小部分)并且不是增量/核外ExtraTreesClassifier(n_estimator=100)
或更多,但也不是核心外的。子估计器的数量越多,训练所需的时间就越长。您还可以尝试Nystroem approximation通过使用适合数据小子集(例如 10000样本),然后将整个转换后的训练集传递给线性模型,例如 SGDClassifier:它需要对数据集进行 2 次传递。
还有一个pull request for 1 hidden layer perceptron在 github 上,它的计算速度应该比 ExtraTreesClassifier
更快,并且在 MNIST 上达到 98% 的测试集准确率(并且还提供用于核外学习的partial_fit API)。
编辑:SGDClassifier
分数估计值的波动是预期的:SGD 代表随机梯度下降,这意味着一次只考虑一个示例:糟糕分类样本可能会导致模型权重的更新,这对其他样本来说是有害的,因此您需要对数据进行多次传递,以使学习率降低到足以获得验证准确性的更平滑的估计。您可以使用itertools.repeat在 for 循环中对数据集执行多次(例如 10 次)。
关于python - MNIST 和 SGDClassifier 分类器,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/18895553/
我的机器学习算法已经学习了 MNIST 数据库中的 70000 张图像。我想在 MNIST 数据集中未包含的图像上对其进行测试。但是,我的预测函数无法读取我的测试图像的数组表示。 如何在外部图像上测试
我正在尝试创建我自己的 MNIST 数据版本。我已将训练和测试数据转换为以下文件; test-images-idx3-ubyte.gz test-labels-idx1-ubyte.gz train-
我通过 pip 在我的 Windows 设备上安装了 python-mnist 包,正如 Github 文档中所述,方法是在我的 Anaconda 终端中输入以下命令: pip install pyt
描述 Fashion Mnist 是一个类似于 Mnist 的图像数据集. 涵盖 10 种类别的 7 万 (6 万训练集 + 1 万测试集) 个不同商品的图片. Tensor
该模型现在只能使用 tf. 识别单个字母。我怎样才能让它识别连续的字母单词? 最佳答案 手写数字识别。 ... MNIST 是一个广泛用于手写数字分类任务的数据集。它由 70,000 个标记为 28x
我已经从 MNIST 训练集中解压了第一张图像,并且可以访问 (28,28) 矩阵。 [[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0
这是我学习的一部分。我知道标准化确实有助于提高准确性,因此将 mnist 值除以 255。这会将所有像素除以 255,因此 28*28 的所有像素的值将在 0.0 到 1.0 范围内. 现在我厌倦了将
我已成功将 MNIST 数据下载到扩展名为 .npy 的文件中。当我打印第一张图像的几列时。我得到以下结果。这里每个数字代表什么? a= np.load("training_set.npy") pri
我用tensorflow写了一个程序来处理Kaggle的数字识别问题。程序可以正常运行,但训练准确率总是很低,大约10%,如下: step 0, training accuracy 0.11 step
在 cnn_mnist.py例如,脚本首先加载训练和测试数据,如您从 120 行到 124 行中看到的那样。当我打印 print(train_data.shape) 时,我得到 (55000, 784
我研究神经网络有一段时间了,用python和numpy做了一个实现。我用 XOR 做了一个非常简单的例子,它运行良好。所以我想我更进一步尝试 MNIST 数据库。 这是我的问题。我正在使用具有 784
我目前正在研究手写数字识别问题。 首先,我针对 MNIST 数据集测试了示例手写数字。 我的准确率为 53%,我需要 90% 以上的准确率。 以下是我迄今为止为提高准确性所做的尝试。 创建了我自己的数
我正在尝试使用我自己的数字图像数据集测试 mnist。 我为此写了一个 python 脚本,但它给出了一个错误。错误在代码的第 16 行。实际上我无法发送图像进行测试。给我一些建议。提前致谢。 imp
我知道这可能是一个愚蠢的问题,但我真的不明白为什么。下面是我尝试从训练数据中打印单个图像和具有相同索引的标签的代码 import matplotlib.pyplot as plt from tenso
我尝试使用以下数据集在 python 中制作一个能够识别手写数字的脚本:http://deeplearning.net/data/mnist/mnist.pkl.gz . 关于这个问题和我试图实现的算
我正在尝试解决 Android 设备上的 MNIST 分类问题。我已经有一个经过训练的模型,现在我希望能够识别照片上的单个数字。 拍完照片后,我会进行一些预处理,然后再将图像传递给模型。这是原始图像的
MNIST 数据集介绍 MNIST 包含 0~9 的手写数字, 共有 60000 个训练集和 10000 个测试集. 数据的格式为单通道 28*28 的灰度图. LeNet 模型
我想导入 mnist digits 数字以在一个图中显示,并编写这样的代码, import keras from keras.datasets import mnist import matplotl
我目前正在研究数字手写识别问题。我发现很多state-of-art算法对mnist dateset采用了一些预处理方法,比如deskewing和jittering(我不知道'jittering'是什么
我到处找,但找不到我想要的。基本上,MNIST 数据集具有像素值在范围 [0, 255] 内的图像。 .人们说,一般来说,最好做到以下几点: 将数据缩放到 [0,1]范围。 将数据标准化为具有零均值和
我是一名优秀的程序员,十分优秀!