gpt4 book ai didi

python - 这个减法在Python中是如何工作的?

转载 作者:行者123 更新时间:2023-11-30 08:54:23 26 4
gpt4 key购买 nike

我的问题只涉及这段代码的一小部分,但我将其全部发布,以防它有帮助。取自http://neuralnetworksanddeeplearning.com/chap1.html#implementing_our_network_to_classify_digits (从这里向下滚动查看代码说明)

import numpy as np

class Network(object):

def __init__(self, sizes):
"""The list ``sizes`` contains the number of neurons in the
respective layers of the network. For example, if the list
was [2, 3, 1] then it would be a three-layer network, with the
first layer containing 2 neurons, the second layer 3 neurons,
and the third layer 1 neuron. The biases and weights for the
network are initialized randomly, using a Gaussian
distribution with mean 0, and variance 1. Note that the first
layer is assumed to be an input layer, and by convention we
won't set any biases for those neurons, since biases are only
ever used in computing the outputs from later layers."""
self.num_layers = len(sizes)
self.sizes = sizes
self.biases = [np.random.randn(y, 1) for y in sizes[1:]]
self.weights = [np.random.randn(y, x)
for x, y in zip(sizes[:-1], sizes[1:])]

def feedforward(self, a):
"""Return the output of the network if ``a`` is input."""
for b, w in zip(self.biases, self.weights):
a = sigmoid(np.dot(w, a)+b)
return a

def SGD(self, training_data, epochs, mini_batch_size, eta,
test_data=None):
"""Train the neural network using mini-batch stochastic
gradient descent. The ``training_data`` is a list of tuples
``(x, y)`` representing the training inputs and the desired
outputs. The other non-optional parameters are
self-explanatory. If ``test_data`` is provided then the
network will be evaluated against the test data after each
epoch, and partial progress printed out. This is useful for
tracking progress, but slows things down substantially."""
if test_data: n_test = len(test_data)
n = len(training_data)
for j in xrange(epochs):
random.shuffle(training_data)
mini_batches = [
training_data[k:k+mini_batch_size]
for k in xrange(0, n, mini_batch_size)]
for mini_batch in mini_batches:
self.update_mini_batch(mini_batch, eta)
if test_data:
print "Epoch {0}: {1} / {2}".format(
j, self.evaluate(test_data), n_test)
else:
print "Epoch {0} complete".format(j)

def update_mini_batch(self, mini_batch, eta):
"""Update the network's weights and biases by applying
gradient descent using backpropagation to a single mini batch.
The ``mini_batch`` is a list of tuples ``(x, y)``, and ``eta``
is the learning rate."""
nabla_b = [np.zeros(b.shape) for b in self.biases]
nabla_w = [np.zeros(w.shape) for w in self.weights]
for x, y in mini_batch:
delta_nabla_b, delta_nabla_w = self.backprop(x, y)
nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
self.weights = [w-(eta/len(mini_batch))*nw
for w, nw in zip(self.weights, nabla_w)]
self.biases = [b-(eta/len(mini_batch))*nb
for b, nb in zip(self.biases, nabla_b)]

def backprop(self, x, y):
"""Return a tuple ``(nabla_b, nabla_w)`` representing the
gradient for the cost function C_x. ``nabla_b`` and
``nabla_w`` are layer-by-layer lists of numpy arrays, similar
to ``self.biases`` and ``self.weights``."""
nabla_b = [np.zeros(b.shape) for b in self.biases]
nabla_w = [np.zeros(w.shape) for w in self.weights]
# feedforward
activation = x
activations = [x] # list to store all the activations, layer by layer
zs = [] # list to store all the z vectors, layer by layer
for b, w in zip(self.biases, self.weights):
z = np.dot(w, activation)+b
zs.append(z)
activation = sigmoid(z)
activations.append(activation)
# backward pass
delta = self.cost_derivative(activations[-1], y) * \
sigmoid_prime(zs[-1])
nabla_b[-1] = delta
nabla_w[-1] = np.dot(delta, activations[-2].transpose())
# Note that the variable l in the loop below is used a little
# differently to the notation in Chapter 2 of the book. Here,
# l = 1 means the last layer of neurons, l = 2 is the
# second-last layer, and so on. It's a renumbering of the
# scheme in the book, used here to take advantage of the fact
# that Python can use negative indices in lists.
for l in xrange(2, self.num_layers):
z = zs[-l]
sp = sigmoid_prime(z)
delta = np.dot(self.weights[-l+1].transpose(), delta) * sp
nabla_b[-l] = delta
nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())
return (nabla_b, nabla_w)

def evaluate(self, test_data):
"""Return the number of test inputs for which the neural
network outputs the correct result. Note that the neural
network's output is assumed to be the index of whichever
neuron in the final layer has the highest activation."""
test_results = [(np.argmax(self.feedforward(x)), y)
for (x, y) in test_data]
return sum(int(x == y) for (x, y) in test_results)

def cost_derivative(self, output_activations, y):
"""Return the vector of partial derivatives \partial C_x /
\partial a for the output activations."""
return (output_activations-y)

#### Miscellaneous functions
def sigmoid(z):
"""The sigmoid function."""
return 1.0/(1.0+np.exp(-z))

def sigmoid_prime(z):
"""Derivative of the sigmoid function."""
return sigmoid(z)*(1-sigmoid(z))

忽略大部分代码,除非您需要退后一步来理解数据结构。首先,在self.cost_derivative(activations[-1], y)行中backprop 的一半方法中,我们可以看到传递了两个值 - 据我所知,这两个值都是数组(我在输出它们时可以看到这一点,并且作者也对此进行了解释)。在 cost_derivative方法,它所做的就是减去两个值 - 但它们是数组,那么这是如何工作的呢?

当我在 python 中执行此操作时,我可以理解得到一个错误

a = [1,2,4]
b = [5,6,7]
print(a-b)

我相信这可能是因为它们是 numpy 数组?

此外,sigmoid 也发生了类似的情况。和sigmoid_prime函数,其中 z是一个数组(请参阅在哪里使用参数作为数组调用这些函数)...即使该函数将其视为单个值...它是如何工作的?我认为它只是对数组中的每个值执行此操作?

本质上,我一直看到一些我期望只适用于单个值的功能才能与数组一起使用。

为任何解释干杯,我发布的链接有更多解释。

最佳答案

当你减去两个列表时:

a = [1,2,4]
b = [5,6,7]
print(a-b)

python 调用一个函数__sub__来尝试将它们相减。 Vanilla python 的 __sub__ 无法对列表进行减法,并且列表对象没有 __sub__ 函数,因此会抛出错误。

当你从 numpy 数组中减去列表时:

a = [1,2,4]
b = numpy.array([5,6,7])
print(a-b)

Vanilla __sub__ 仍然失败,但 python 会查找任何特定于对象的 __sub__ 函数并找到 numpy 的。 Numpy 将所有其他对象包装在 np.asarray() 中,并尝试像 numpy 数组一样减去它们。由于列表映射到一维数组,并且大小相同,因此可以进行减法,最终得到一个数组作为输出。

关于python - 这个减法在Python中是如何工作的?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/41004859/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com