- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在 Coursera 上学习 Andrew Ng 的机器学习,方法是使用 Python 而不是 MATLAB 实现所有代码。
在编程练习 3 中,我以向量化形式实现了正则化逻辑回归成本函数:
def compute_cost_regularized(theta, X, y, lda):
reg =lda/(2*len(y)) * np.sum(theta**2)
return 1/len(y) * np.sum(-y @ np.log(sigmoid(X@theta))
- (1-y) @ np.log(1-sigmoid(X@theta))) + reg
在以下测试输入上:
theta_test = np.array([-2,-1,1,2])
X_test = np.concatenate((np.ones((5,1)),
np.fromiter((x/10 for x in range(1,16)), float).reshape((3,5)).T), axis = 1)
y_test = np.array([1,0,1,0,1])
lambda_test = 3
上述成本函数输出3.734819396109744
。但是,根据提供给我们的 MATLAB 框架代码,正确的输出应该是 2.534819
。我很困惑,因为我找不到我的成本函数有任何问题,但我相信它有一个错误。其实我也implemented it在编程练习 2 中的二元分类情况下,它工作得很好,给出了 result close to the expected value 。
我认为原因之一可能是我错误地构建了 *_test
输入数组,这是基于对所提供的 MATLAB 框架代码的误解,这些代码是:
theta_t = [-2; -1; 1; 2];
X_t = [ones(5,1) reshape(1:15,5,3)/10];
y_t = ([1;0;1;0;1] >= 0.5);
lambda_t = 3;
但是,我通过 Octave 解释器运行了它们,看看它们到底是什么,并确保我可以在 python 中完全匹配它们。
此外,使用我自己的矢量化和正则化梯度函数基于这些输入计算梯度也是正确的。最后,我决定继续计算并检查预测结果。我的预测准确度远低于预期准确度,因此更有理由怀疑我的成本函数出了问题,导致其他一切都错了。
请帮忙!谢谢。
最佳答案
如果您还记得正则化,那么您没有正则化偏差系数。您不仅在执行梯度下降时将梯度设置为零,而且不将其包含在成本函数中。您在将此作为总和的一部分包含在内时犯了一个小错误(请参阅您链接的笔记本上的单元格 #18 - 总和应从 j = 1
开始,但您将其作为 j = 0
)。因此,您需要从第二个元素到 theta
的末尾求和。 ,不是第一个。您可以在ex2.pdf
的第9页验证这一点。您的 Github 存储库上可以看到 PDF 作业。这解释了当您将偏差单元作为正则化的一部分时,成本会膨胀。
因此,在reg
中计算正则化时,索引theta
这样您就可以从第二个元素开始:
def compute_cost_regularized(theta, X, y, lda):
reg =lda/(2*len(y)) * np.sum(theta[1:]**2) # Change here
return 1/len(y) * np.sum(-y @ np.log(sigmoid(X@theta))
- (1-y) @ np.log(1-sigmoid(X@theta))) + reg
完成此操作后,定义您的测试值并定义您的 sigmoid
函数,我得到了您期望的正确答案:
In [8]: def compute_cost_regularized(theta, X, y, lda):
...: reg =lda/(2*len(y)) * np.sum(theta[1:]**2)
...: return 1/len(y) * np.sum(-y @ np.log(sigmoid(X@theta))
...: - (1-y) @ np.log(1-sigmoid(X@theta))) + reg
...:
In [9]: def sigmoid(z):
...: return 1 / (1 + np.exp(-z))
...:
In [10]: theta_test = np.array([-2,-1,1,2])
...: X_test = np.concatenate((np.ones((5,1)),
...: np.fromiter((x/10 for x in range(1,16)), float).reshape((3,5)).T), axis = 1)
...: y_test = np.array([1,0,1,0,1])
...: lambda_test = 3
...:
In [11]: compute_cost_regularized(theta_test, X_test, y_test, lambda_test)
Out[11]: 2.5348193961097438
关于python - Coursera ML - 在 python 中实现正则化逻辑回归成本函数,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/44753116/
[在此处输入图像描述][1]我正在努力弄清楚回归是否是我需要走的路线,以便解决我当前使用 Python 的挑战。这是我的场景: 我有一个 195 行 x 25 列的 Pandas Dataframe
我想训练回归模型(不是分类),其输出是连续数字。 假设我有输入变量 X,其范围在 -70 到 70 之间。我有输出变量 Y,其范围在 -5 到 5 之间。X 有 39 个特征,Y 有 16 个特征,每
我想使用神经网络逼近 sinc 函数。这是我的代码: import tensorflow as tf from keras.layers import Dense from keras.models
我对 postgres 表做了一些更改,我想将其恢复到以前的状态。没有数据库的备份。有办法吗?比如,postgres 会自动拍摄快照并将其存储在某个地方,还是原始数据会永远丢失? 最佳答案 默认情况下
我有大约 100 个 7x7 因变量矩阵(所以有 49 个因变量)。我的自变量是时间。我正在做一个物理项目,我应该通过求解 ODE 得到一个矩阵函数(矩阵的每个元素都是时间的函数)。我使用了 nump
我之前曾被告知——出于完全合理的原因——当结果变量为二元变量时(即是/否、真/假、赢/输等),不应运行 OLS 回归。但是,我经常阅读经济学/其他社会科学方面的论文,其中研究人员对二元变量运行 OLS
您好,我正在使用生命线包进行 Cox 回归。我想检查非二元分类变量的影响。有内置的方法吗?或者我应该将每个类别因子转换为一个数字?或者,在生命线中使用 kmf fitter,是否可以对每个因素执行此操
作为后续 this question ,我拟合了具有定量和定性解释变量之间相互作用的多元 Logistic 回归。 MWE如下: Type |z|) (Intercept) -0.65518
我想在单个动物园对象中的多对数据系列上使用 lm 执行滚动回归。 虽然我能够通过以下代码对动物园对象中的一对数据系列执行滚动回归: FunLm seat time(seat) seat fm
是否有一种简单的方法可以在 R 中拟合多元回归,其中因变量根据 Skellam distribution 分布? (两个泊松分布计数之间的差异)?比如: myskellam <- glm(A ~ B
包含各种特征和回归目标(称为 qval)的数据集用于训练 XGBoost 回归器。该值 qval 介于 0 和 1 之间,应具有以下分布: 到目前为止,还不错。但是,当我使用 xgb.save_mod
这有效: felm(y ~ x1 + x2 | fe1 + fe2 | 0 | , data = data) 我想要: fixedeffects = "fe1 + fe2" felm(y ~ x1
这有效: felm(y ~ x1 + x2 | fe1 + fe2 | 0 | , data = data) 我想要: fixedeffects = "fe1 + fe2" felm(y ~ x1
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 我们不允许提问寻求书籍、工具、软件库等的推荐。您可以编辑问题,以便用事实和引用来回答。 关闭 7 年前。
我刚刚开始使用 R 进行统计分析,而且我还在学习。我在 R 中创建循环时遇到问题。我有以下案例,我想知道是否有人可以帮助我。对我来说,这似乎是不可能的,但对你们中的一些人来说,这只是小菜一碟。我有不同
是否可以在 sklearn 中使用或不使用(即仅使用截距)预测器来运行回归(例如逻辑回归)?这似乎是一个相当标准的类型分析,也许这些信息已经在输出中可用。 我发现的唯一相关的东西是sklearn.sv
假设我对一些倾斜的数据分布执行 DNN 回归任务。现在我使用平均绝对误差作为损失函数。 机器学习中的所有典型方法都是最小化平均损失,但对于倾斜来说这是不恰当的。从实际角度来看,最好尽量减少中值损失。我
我正在对公寓特征进行线性回归分析,然后预测公寓的价格。目前,我已经收集了我所在城市 13000 套公寓的特征。我有 23-25 个特征,我不确定在公寓价格预测中拥有如此多的特征是否正常。 我有以下功能
我是 ML 新手,对 catboost 有疑问。所以,我想预测函数值(例如 cos | sin 等)。我回顾了一切,但我的预测始终是直线 是否可能,如果可能,我该如何解决我的问题 我很高兴收到任何评论
我目前已经为二进制类实现了概率(至少我这么认为)。现在我想扩展这种回归方法,并尝试将其用于波士顿数据集。不幸的是,我的算法似乎被卡住了,我当前运行的代码如下所示: from sklearn impor
我是一名优秀的程序员,十分优秀!