- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有以下数据,其中每列中,带有数字的行是输入,字母是输出。
A,A,A,B,B,B
-0.979090189,0.338819904,-0.253746508,0.213454999,-0.580601104,-0.441683968
-0.48395313,0.436456904,-1.427424032,-0.107093825,0.320813402,0.060866105
-1.098818173,-0.999161692,-1.371721698,-1.057324962,-1.161752652,-0.854872591
-1.53191442,-1.465454248,-1.350414216,-1.732518018,-1.674040715,-1.561568496
2.522796162,2.498153298,3.11756171,2.125738509,3.003929536,2.514411247
-0.060161596,-0.487513844,-1.083513761,-0.908023322,-1.047536921,-0.48276759
0.241962669,0.181365373,0.174042637,-0.048013217,-0.177434916,0.42738621
-0.603856395,-1.020531402,-1.091134021,-0.863008165,-0.683233589,-0.849059931
-0.626159165,-0.348144322,-0.518640038,-0.394482485,-0.249935646,-0.543947259
-1.407263942,-1.387660115,-1.612988118,-1.141282747,-0.944745366,-1.030944216
-0.682567673,-0.043613473,-0.105679403,0.135431139,0.059104888,-0.132060832
-1.10107164,-1.030047313,-1.239075022,-0.651818656,-1.043589073,-0.765992541
我正在尝试执行 KNN LOOCV 来获取准确度得分和混淆矩阵。
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import LeaveOneOut
import pandas as pd
def main():
csv = 'data.csv'
df = pd.read_csv(csv)
X = df.values.T
y = df.columns.values
clf = KNeighborsClassifier()
loo = LeaveOneOut()
for train_index, test_index in loo.split(X):
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
clf.fit(X_train, y_train)
y_true = y_test
y_pred = clf.predict(X_test)
ac = accuracy_score(y_true, y_pred)
cm = confusion_matrix(y_true, y_pred)
print ac
print cm
if __name__ == '__main__':
main()
但是我的结果全是0。我哪里出错了?
最佳答案
我认为你的模型没有得到正确的训练,因为它只需要猜测一个值,所以它没有得到正确的结果。我可以建议切换到 KFold 或 StratifiedKFold。 LOO 的缺点是对于大样本来说它变得非常耗时。以下是我在 X 数据上实现 StratifiedKFold 并进行 3 次分割时发生的情况。我用 0 和 1 随机填充 y,而不是使用 A 和 B,并且没有转置数据,因此它有 12 行:
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import StratifiedKFold
import pandas as pd
csv = 'C:\df_low_X.csv'
df = pd.read_csv(csv, header=None)
print(df)
X = df.iloc[:, :-1].values
y = df.iloc[:, -1].values
clf = KNeighborsClassifier()
kf = StratifiedKFold(n_splits = 3)
ac = []
cm = []
for train_index, test_index in kf.split(X,y):
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
print(X_train, X_test)
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
ac.append(accuracy_score(y_test, y_pred))
cm.append(confusion_matrix(y_test, y_pred))
print(ac)
print(cm)
# ac
[0.25, 0.75, 0.5]
# cm
[array([[1, 1],
[2, 0]], dtype=int64),
array([[1, 1],
[0, 2]], dtype=int64),
array([[0, 2],
[0, 2]], dtype=int64)]
关于python - k 个最近邻,具有准确度得分和混淆矩阵的交叉验证,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48726418/
很难说出这里问的是什么。这个问题是含糊的、模糊的、不完整的、过于宽泛的或修辞性的,无法以目前的形式得到合理的回答。如需帮助澄清此问题以便重新打开它,visit the help center 。 已关
我们可以说 O(K + (N-K)logK)相当于O(K + N logK)对于 1 < = K <= N ? 最佳答案 简短的回答是它们不等价,这取决于k 的值。如果k等于N,那么第一个复杂度是O(
我有以下解决方案,但我从其他评论者那里听说它是 O(N * K * K),而不是 O(N * K)其中 N 是 K 列表的(最大)长度,K 是列表的数量。例如,给定列表 [1, 2, 3] 和 [4,
我试图理解这些语法结构之间的语义差异。 if ((i% k) == (l % k) == 0) 和 if ((i % k) == 0 && (l % k) == 0) 最佳答案 您的特定表达式((i
我有时会使用一维数组: A = np.array([1, 2, 3, 4]) 或 2D 阵列(使用 scipy.io.wavfile 读取单声道或立体声信号): A = np.array([[1, 2
在文档聚类过程中,作为数据预处理步骤,我首先应用奇异向量分解得到U、S和Vt 然后通过选择适当数量的特征值,我截断了 Vt,这让我从阅读的内容中得到了很好的文档-文档相关性 here .现在我正在对矩
我问的是关于 Top K 算法的问题。我认为 O(n + k log n) 应该更快,因为……例如,如果您尝试插入 k = 300 和 n = 100000000,我们可以看到 O(n + k log
这个问题与另一个问题R:sample()密切相关。 。我想在 R 中找到一种方法来列出 k 个数字的所有排列,总和为 k,其中每个数字都是从 0:k 中选择的。如果k=7,我可以从0,1,...,7中
我目前正在评估基于隐式反馈的推荐系统。我对排名任务的评估指标有点困惑。具体来说,我希望通过精确度和召回率来进行评估。 Precision@k has the advantage of not requ
我在 Python 中工作,需要找到一种算法来生成所有可能的 n 维 k,k,...,k 数组,每个数组都沿轴有一行 1。因此,该函数接受两个数字 - n 和 k,并且应该返回一个数组列表,其中包含沿
我们有 N 对。每对包含两个数字。我们必须找到最大数 K,这样如果我们从给定的 N 对中取 J (1 2,如果我们选择三对 (1,2),我们只有两个不同的数字,即 1 和 2。 从一个开始检查每个可能
鉴于以下问题,我不能完全确定我当前的解决方案: 问题: 给定一个包含 n 元素的最大堆,它存储在数组 A 中,是否可以打印所有最大的 K 元素在 O(K*log(K)) 中? 我的回答: 是的,是的,
我明白了: val vector: RDD[(String, Array[String])] = [("a", {v1,v2,..}),("b", {u1,u2,..})] 想转换成: RDD[(St
我有 X 个正数,索引为 x_i。每个 x_i 需要进入 K 组之一(其中 K 是预先确定的)。令 S_j 为 K_j 中所有 x_i 的总和。我需要分配所有 x_i 以使所有 S_j 的方差最小化。
关闭。这个问题是not reproducible or was caused by typos .它目前不接受答案。 这个问题是由于错别字或无法再重现的问题引起的。虽然类似的问题可能是on-topi
我正在研究寻找原始数的算法,看到下面的语句,我不明白为什么。 while (k*k <= n) 优于 while (k <= Math.sqrt(n)) 是因为函数调用吗?该调用函数使用更多资源。 更
我想找到一种尽可能快的方法来将两个小 bool 矩阵相乘,其中小意味着 8x8、9x9 ... 16x16。这个例程会被大量使用,所以需要非常高效,所以请不要建议直截了当的解决方案应该足够快。 对于
有没有一种惯用的方法来获取 Set和 Function ,并获得 Map实时取景? (即 Map 由 Set 和 Function 组合支持,例如,如果将元素添加到 Set ,则相应的条目也存在于 M
这个问题在这里已经有了答案: Can a local variable's memory be accessed outside its scope? (20 个答案) returning addr
给定一个矩阵:- k = [1 2 3 ; 4 5 6 ; 7 8 NaN]; 如果我想用 0 替换一个数字,比如 2,我可以使用这个:k(k==2) =
我是一名优秀的程序员,十分优秀!