gpt4 book ai didi

machine-learning - 强化学习适用于随机环境吗?

转载 作者:行者123 更新时间:2023-11-30 08:53:19 25 4
gpt4 key购买 nike

我有一个关于强化学习 (RL) 对于我们正在尝试解决的问题的适用性的基本问题。

我们正在尝试使用强化学习进行库存管理 - 其中需求完全随机(它可能在现实生活中具有某种模式,但现在让我们假设我们被迫将其视为纯粹的随机需求)随机的)。

据我了解,强化学习可以帮助学习如何玩游戏(例如国际象棋)或帮助机器人学习走路。 但是所有游戏都有规则,(OpenAI Gym 的)“车杆”也是如此 – 有一些“物理”规则来控制车杆何时倾斜并摔倒。

对于我们的问题来说,没有规则——环境随机变化(对产品的需求)。

强化学习真的适用于这种情况吗?

如果确实如此,那么什么会提高性能?

更多详情:- “环境”中唯一可用的两个刺激是产品“X”的当前可用水平和当前需求“Y”- “ Action ”是二元的 - 我是否订购一定数量的“Q”来重新填充或不订购(离散 Action 空间)。- 我们正在使用 DQN 和 Adam 优化器。

我们的结果很差 - 我承认我只训练了大约 5,000 或 10,000 - 我应该让它训练几天,因为这是一个随机环境?

谢谢拉杰什

最佳答案

你说的是非平稳意义上的随机,所以,不,强化学习在这里不是最好的。

强化学习假设您的环境是静止的。在整个学习过程中,环境的潜在概率分布(转换函数和奖励函数)必须保持不变。

当然,强化学习和深度强化学习可以处理一些稍微不稳定的问题,但在这方面却很困难。马尔可夫决策过程 (MDP) 和部分可观察 MDP 假设平稳。因此,专门用于利用类似 MDP 环境的基于值的算法,例如 SARSA、Q-learning、DQN、DDQN、Dueling DQN 等,将很难在非平稳环境中学习任何内容。您越多地采用基于策略的算法,例如 PPO、TRPO,甚至更好的无梯度算法,例如 GA、CEM 等,您的机会就越大,因为这些算法不会尝试利用此假设。此外,调整学习率对于确保代理永不停止学习至关重要。

最好的选择是采用黑盒优化方法,例如遗传算法等。

关于machine-learning - 强化学习适用于随机环境吗?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/52744919/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com