gpt4 book ai didi

python-2.7 - sklearn : semi-supervised learning - LabelSpreadingModel memory error

转载 作者:行者123 更新时间:2023-11-30 08:52:20 26 4
gpt4 key购买 nike

我正在使用sklearn LabelSpreadingModel,如下所示:

label_spreading_model = LabelSpreading()
model_s = label_spreading_model.fit(my_inputs, labels)

但是我遇到了以下错误:

   MemoryErrorTraceback (most recent call last)
<ipython-input-17-73adbf1fc908> in <module>()
11
12 label_spreading_model = LabelSpreading()
---> 13 model_s = label_spreading_model.fit(my_inputs, labels)

/usr/local/lib/python2.7/dist-packages/sklearn/semi_supervised/label_propagation.pyc in fit(self, X, y)
224
225 # actual graph construction (implementations should override this)
--> 226 graph_matrix = self._build_graph()
227
228 # label construction

/usr/local/lib/python2.7/dist-packages/sklearn/semi_supervised/label_propagation.pyc in _build_graph(self)
455 affinity_matrix = self._get_kernel(self.X_)
456 laplacian = graph_laplacian(affinity_matrix, normed=True)
--> 457 laplacian = -laplacian
458 if sparse.isspmatrix(laplacian):
459 diag_mask = (laplacian.row == laplacian.col)

MemoryError:

我的输入矩阵的拉普拉斯算子似乎有问题。是否有任何我可以配置的参数或任何可以避免此错误的更改?谢谢!

最佳答案

很明显:您的电脑内存不足。

由于您没有设置任何参数,因此默认使用rbf-kernel ( proof )。

一些摘录自scikit-learn's docs :

The RBF kernel will produce a fully connected graph which is represented in
memory by a dense matrix. This matrix may be very large and combined with the
cost of performing a full matrix multiplication calculation for each iteration
of the algorithm can lead to prohibitively long running times

也许以下内容(上面文档中的下一句话)会有所帮助:

On the other hand, the KNN kernel will produce a much more memory-friendly 
sparse matrix which can drastically reduce running times.

但我不知道你的数据、电脑配置等。并且只能猜测...

关于python-2.7 - sklearn : semi-supervised learning - LabelSpreadingModel memory error,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/40097430/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com