gpt4 book ai didi

python - Scikit Learn OneHotEncoder 拟合和变换错误 : ValueError: X has different shape than during fitting

转载 作者:行者123 更新时间:2023-11-30 08:52:08 25 4
gpt4 key购买 nike

下面是我的代码。

我知道为什么在转换过程中会发生错误。这是因为拟合和变换期间特征列表不匹配。我该如何解决这个问题?我如何才能为所有其余功能获得 0?

在此之后,我想用它来部分拟合 SGD 分类器。

Jupyter QtConsole 4.3.1
Python 3.6.2 |Anaconda custom (64-bit)| (default, Sep 21 2017, 18:29:43)
Type 'copyright', 'credits' or 'license' for more information
IPython 6.1.0 -- An enhanced Interactive Python. Type '?' for help.

import pandas as pd
from sklearn.preprocessing import OneHotEncoder

input_df = pd.DataFrame(dict(fruit=['Apple', 'Orange', 'Pine'],
color=['Red', 'Orange','Green'],
is_sweet = [0,0,1],
country=['USA','India','Asia']))
input_df
Out[1]:
color country fruit is_sweet
0 Red USA Apple 0
1 Orange India Orange 0
2 Green Asia Pine 1



filtered_df = input_df.apply(pd.to_numeric, errors='ignore')
filtered_df.info()
# apply one hot encode
refreshed_df = pd.get_dummies(filtered_df)
refreshed_df
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3 entries, 0 to 2
Data columns (total 4 columns):
color 3 non-null object
country 3 non-null object
fruit 3 non-null object
is_sweet 3 non-null int64
dtypes: int64(1), object(3)
memory usage: 176.0+ bytes


Out[2]:
is_sweet color_Green color_Orange color_Red country_Asia \
0 0 0 0 1 0
1 0 0 1 0 0
2 1 1 0 0 1

country_India country_USA fruit_Apple fruit_Orange fruit_Pine
0 0 1 1 0 0
1 1 0 0 1 0
2 0 0 0 0 1



enc = OneHotEncoder()
enc.fit(refreshed_df)

Out[3]:
OneHotEncoder(categorical_features='all', dtype=<class 'numpy.float64'>,
handle_unknown='error', n_values='auto', sparse=True)



new_df = pd.DataFrame(dict(fruit=['Apple'],
color=['Red'],
is_sweet = [0],
country=['USA']))
new_df


Out[4]:
color country fruit is_sweet
0 Red USA Apple 0



filtered_df1 = new_df.apply(pd.to_numeric, errors='ignore')
filtered_df1.info()
# apply one hot encode
refreshed_df1 = pd.get_dummies(filtered_df1)
refreshed_df1
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1 entries, 0 to 0
Data columns (total 4 columns):
color 1 non-null object
country 1 non-null object
fruit 1 non-null object
is_sweet 1 non-null int64
dtypes: int64(1), object(3)
memory usage: 112.0+ bytes



Out[5]:
is_sweet color_Red country_USA fruit_Apple
0 0 1 1 1

enc.transform(refreshed_df1)
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-6-33a6a884ba3f> in <module>()
----> 1 enc.transform(refreshed_df1)

~/anaconda3/lib/python3.6/site-packages/sklearn/preprocessing/data.py in transform(self, X)
2073 """
2074 return _transform_selected(X, self._transform,
-> 2075 self.categorical_features, copy=True)
2076
2077

~/anaconda3/lib/python3.6/site-packages/sklearn/preprocessing/data.py in _transform_selected(X, transform, selected, copy)
1810
1811 if isinstance(selected, six.string_types) and selected == "all":
-> 1812 return transform(X)
1813
1814 if len(selected) == 0:

~/anaconda3/lib/python3.6/site-packages/sklearn/preprocessing/data.py in _transform(self, X)
2030 raise ValueError("X has different shape than during fitting."
2031 " Expected %d, got %d."
-> 2032 % (indices.shape[0] - 1, n_features))
2033
2034 # We use only those categorical features of X that are known using fit.

ValueError: X has different shape than during fitting. Expected 10, got 4.

最佳答案

您需要 LabelEncoder 而不是使用 pd.get_dummies() + OneHotEncoder,它可以存储原始值,然后在新数据上使用它们。

像下面这样更改代码将为您提供所需的结果。

import pandas as pd
from sklearn.preprocessing import OneHotEncoder, LabelEncoder
input_df = pd.DataFrame(dict(fruit=['Apple', 'Orange', 'Pine'],
color=['Red', 'Orange','Green'],
is_sweet = [0,0,1],
country=['USA','India','Asia']))

filtered_df = input_df.apply(pd.to_numeric, errors='ignore')

# This is what you need
le_dict = {}
for col in filtered_df.columns:
le_dict[col] = LabelEncoder().fit(filtered_df[col])
filtered_df[col] = le_dict[col].transform(filtered_df[col])

enc = OneHotEncoder()
enc.fit(filtered_df)
refreshed_df = enc.transform(filtered_df).toarray()

new_df = pd.DataFrame(dict(fruit=['Apple'],
color=['Red'],
is_sweet = [0],
country=['USA']))
for col in new_df.columns:
new_df[col] = le_dict[col].transform(new_df[col])

new_refreshed_df = enc.transform(new_df).toarray()

print(filtered_df)
color country fruit is_sweet
0 2 2 0 0
1 1 1 1 0
2 0 0 2 1

print(refreshed_df)
[[ 0. 0. 1. 0. 0. 1. 1. 0. 0. 1. 0.]
[ 0. 1. 0. 0. 1. 0. 0. 1. 0. 1. 0.]
[ 1. 0. 0. 1. 0. 0. 0. 0. 1. 0. 1.]]

print(new_df)
color country fruit is_sweet
0 2 2 0 0

print(new_refreshed_df)
[[ 0. 0. 1. 0. 0. 1. 1. 0. 0. 1. 0.]]

关于python - Scikit Learn OneHotEncoder 拟合和变换错误 : ValueError: X has different shape than during fitting,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48074462/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com