- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我在做kNN对一些数据进行分类。我有按 80/20 的比例随机分割训练集和测试集的数据。我的数据如下所示:
[ [1.0, 1.52101, 13.64, 4.49, 1.1, 71.78, 0.06, 8.75, 0.0, 0.0, 1.0],
[2.0, 1.51761, 13.89, 3.6, 1.36, 72.73, 0.48, 7.83, 0.0, 0.0, 2.0],
[3.0, 1.51618, 13.53, 3.55, 1.54, 72.99, 0.39, 7.78, 0.0, 0.0, 3.0],
...
]
矩阵最后一列中的项目是类别:1.0、2.0 和 3.0
在特征标准化之后,我的数据如下所示:
[[-0.5036443480260487, -0.03450760227559746, 0.06723230162846759, 0.23028986544844693, -0.025324623254270005, 0.010553065215338569, 0.0015136367098358505, -0.11291235596166802, -0.05819669234942126, -0.12069793876044387, 1.0],
[-0.4989050339943617, -0.11566537753097901, 0.010637426608816412, 0.2175704556290625, 0.03073267976659575, 0.05764598316498372, -0.012976783512350588, -0.11815839520204152, -0.05819669234942126, -0.12069793876044387, 2.0],
...
]
我用于标准化的公式:
(X - avg(X)) / (max(X) - min(X))
<小时/>
我对每个 K = 1 到 25(仅限奇数)执行 kNN 分类 100 次。我记录了所使用的每个 K 的平均准确度。这是我的结果:
Average accuracy for K=1 after 100 tests with different data split: 98.91313003886198 %
Average accuracy for K=3 after 100 tests with different data split: 98.11976006170633 %
Average accuracy for K=5 after 100 tests with different data split: 97.71226079929019 %
Average accuracy for K=7 after 100 tests with different data split: 97.47493145754373 %
Average accuracy for K=9 after 100 tests with different data split: 97.16596220947888 %
Average accuracy for K=11 after 100 tests with different data split: 96.81465365733266 %
Average accuracy for K=13 after 100 tests with different data split: 95.78772655522567 %
Average accuracy for K=15 after 100 tests with different data split: 95.23116406332706 %
Average accuracy for K=17 after 100 tests with different data split: 94.52371789094929 %
Average accuracy for K=19 after 100 tests with different data split: 93.85285871435981 %
Average accuracy for K=21 after 100 tests with different data split: 93.26620809747965 %
Average accuracy for K=23 after 100 tests with different data split: 92.58047022661833 %
Average accuracy for K=25 after 100 tests with different data split: 90.55746523509124 %
但是当我应用特征归一化时,准确率会显着下降。我的具有归一化特征的 kNN 结果:
Average accuracy for K=1 after 100 tests with different data split: 88.56128075154439 %
Average accuracy for K=3 after 100 tests with different data split: 85.01466511662318 %
Average accuracy for K=5 after 100 tests with different data split: 83.32096281613967 %
Average accuracy for K=7 after 100 tests with different data split: 83.09434478900455 %
Average accuracy for K=9 after 100 tests with different data split: 82.05628926919964 %
Average accuracy for K=11 after 100 tests with different data split: 79.89732262550343 %
Average accuracy for K=13 after 100 tests with different data split: 79.60617886853211 %
Average accuracy for K=15 after 100 tests with different data split: 79.26511126374507 %
Average accuracy for K=17 after 100 tests with different data split: 77.51457877706329 %
Average accuracy for K=19 after 100 tests with different data split: 76.97848441605367 %
Average accuracy for K=21 after 100 tests with different data split: 75.70005919265326 %
Average accuracy for K=23 after 100 tests with different data split: 76.45758217099551 %
Average accuracy for K=25 after 100 tests with different data split: 76.16619492431572 %
我的代码算法没有逻辑错误,我在简单的数据上检查了它。
<小时/>为什么特征归一化后kNN分类准确率下降这么多?我想归一化本身不应该降低任何分类的准确率。那么使用特征归一化的目的是什么?
最佳答案
认为归一化永远不会降低分类精度是一个普遍的误解。完全可以。
怎么做?
一行中的相对值也非常重要。事实上,它们确实确定了特征空间中点的放置。当您进行标准化时,它可能会严重抵消相对位置。这是可以感觉到的,尤其是在 k-NN 分类中,因为它直接针对点之间的距离进行操作。相比之下,它的效果在SVM中感觉不那么强烈,因为在这种情况下,优化过程仍然能够找到一个相当准确的超平面。
您还应该注意,在这里,您使用 avg(X) 进行标准化。因此,考虑特定行的相邻列中的两个点。如果第一个点远低于各自列的平均值,而第二个点远高于各自列的平均值,而在非归一化意义上,它们是非常接近的数值,则距离计算可能会存在巨大差异。
永远不要指望标准化会创造奇迹。
关于machine-learning - 特征归一化后 kNN 分类的准确率下降?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/33858893/
我正在尝试使用 Pandas 和 scikit-learn 在 Python 中执行分类。我的数据集包含文本变量、数值变量和分类变量的混合。 假设我的数据集如下所示: Project Cost
我想要一种图形化且有吸引力的方式来表示二进制数据的列总和,而不是表格格式。我似乎无法让它发挥作用,尽管有人会认为这将是一次上篮。 数据看起来像这样(我尝试创建一个可重现的示例,但无法让代码填充 0 和
我有一个简单的类别模型: class Category(models.Model): name = models.CharField(max_length=200) slug = mo
我正在开发一个知识系统,当用户进入一道菜时,该系统可以返回酒。我的想法是根据用户的输入为每个葡萄酒类别添加分数,然后显示最适合的葡萄酒类别的前 3 个。例如,如果有人输入鱼,那么知识库中的所有红葡萄酒
我目前正在研究流失问题的预测模型。 每当我尝试运行以下模型时,都会收到此错误:至少一个类级别不是有效的 R 变量名称。这将在生成类概率时导致错误,因为变量名称将转换为 X0、X1。请使用可用作有效 R
如何对栅格重新分类(子集)r1 (与 r2 具有相同的尺寸和范围)基于 r2 中的以下条件在给定的示例中。 条件: 如果网格单元格值为 r2是 >0.5 ,保留>0.5中对应的值以及紧邻0.5个值的相
我想知道在 java 中进行以下分类的最佳方法是什么。例如,我们有一个简单的应用程序,其分类如下: 空气 -----电机类型 -----------平面对象 -----非电机型 -----------
这是一个非常基本的示例。但我正在做一些数据分析,并且不断发现自己编写非常类似的 SQL 计数查询来生成概率表。 我的表被定义为值 0 表示事件未发生,而值 1 表示事件确实发生。 > sqldf(
假设我有一组护照图像。我正在开展一个项目,我必须识别每本护照上的姓名,并最终将该对象转换为文本。 对于标签(或分类(我认为是初学者))的第一部分,每本护照上都有姓名,我该怎么做? 我可以使用哪些技术/
我有这张图片: 我想做的是在花和树之间对这张图片进行分类,这样我就可以找到图片中被树木覆盖的区域,以及被那些花覆盖的区域。 我在想这可能是某种 FFT 问题,但我不确定它是如何工作的。单个花的 FFT
我的数据集有 32 个分类变量和一个数值连续变量(sales_volume) 首先,我使用单热编码 (pd.get_dummies) 将分类变量转换为二进制,现在我有 1294 列,因为每一列都有多个
我正在尝试学习一些神经网络来获得乐趣。我决定尝试从 kaggle 的数据集中对一些神奇宝贝传奇卡进行分类。我阅读了文档并遵循了机器学习掌握指南,同时阅读了媒体以尝试理解该过程。 我的问题/疑问:我尝试
我目前正在进行推文情绪分析,并且有几个关于步骤的正确顺序的问题。请假设数据已经过相应的预处理和准备。所以这就是我将如何进行: 使用 train_test_split(80:20 比例)停止测试数据集。
一些上下文:Working with text classification and big sparse matrices in R 我一直在研究 text2vec 的文本多类分类问题。包装和 ca
数据 我有以下(简化的)数据集,我们称之为 df从现在开始: species rank value 1
我一直在尝试创建一个 RNN。我总共有一个包含 1661 个单独“条目”的数据集,每个条目中有 158 个时间序列坐标。 以下是一个条目的一小部分: 0.00000000e+00 1.9260968
我有一个关于机器学习的分类和回归问题。第一个问题,以下数据集 http://it.tinypic.com/view.php?pic=oh3gj7&s=8#.VIjhRDGG_lF 我们可以说,数据集是
我用1~200个数据作为训练数据,201~220个作为测试数据格式如下:3 个类(类 1、类 2、类 3)和 20 个特征 2 1:100 2:96 3:88 4:94 5:96 6:94 7:72
我有 2 个基于多个数字特征(例如 v1….v20)的输出类别(好和差)。 如果 v1、v2、v3 和 v4 为“高”,则该类别为“差”。如果 v1、v2、v3 和 v4 为“低”,则该类别为“好”
我遇到了使用朴素贝叶斯将文档分类为各种类别问题的问题。 实际上我想知道 P(C) 或我们最初掌握的类别的先验概率会随着时间的推移而不断变化。例如,对于类(class) - [音乐、体育、新闻] 初始概
我是一名优秀的程序员,十分优秀!