- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在通过在 Tensorflow 中构建卷积神经网络模型来进行字符识别。我的模型有 2 个 Conv 层,后面跟着 2 个全连接层。我有大约 78K 训练图像和 13K 测试图像。当我执行模型时,我在测试集上获得了大约 92.xx% 的准确率。当我在 Tensorboard 上可视化我的准确性和损失曲线时。我得到了一条垂直线,但我不知道为什么会得到这个?我得到这样的曲线Accuracy and Cross Entropy curve when viewed on tensorboard 。
权重和偏差的分布曲线也显示一条垂直线 Left side shows testing parameters (weights and bias) and right side shows training parameters on first conv layer
非常感谢在这方面的任何帮助。 !!
def conv_layer(input, size_in, size_out, name="conv"):
with tf.name_scope(name):
w = tf.Variable(tf.random_normal([5, 5, size_in, size_out], stddev=0.1), name="W")
b = tf.Variable(tf.constant(0.1, shape=[size_out]), name="B")
conv = tf.nn.conv2d(input, w, strides=[1, 1, 1, 1],padding="VALID")
act = tf.nn.relu(conv + b)
tf.summary.histogram("weights", w)
tf.summary.histogram("biases", b)
tf.summary.histogram("activations", act)
return tf.nn.max_pool(act, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")`
def fc_layer(input, size_in, size_out, name="fc"):
with tf.name_scope(name):
w = tf.Variable(tf.random_normal([size_in, size_out], stddev=0.1), name="W") # Truncated_normal
b = tf.Variable(tf.constant(0.1, shape=[size_out]), name="B")
act = tf.matmul(input, w) + b
tf.summary.histogram("weights", w)
tf.summary.histogram("biases", b)
tf.summary.histogram("activations", act)
return act
def model(use_two_conv, use_two_fc):
sess = tf.Session()
x = tf.placeholder(tf.float32, shape=[None, 1024], name="x")
x_image = tf.reshape(x, [-1, 32, 32, 1])
tf.summary.image('input', x_image, 3)
y = tf.placeholder(tf.float32, shape=[None,46], name="labels")
if use_two_conv:
conv1 = conv_layer(x_image, 1, 4, "conv1")
conv_out = conv_layer(conv1,4,16,"conv2")
else:
conv1 = conv_layer(x_image, 1, 16, "conv1")
conv_out = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")
flattened = tf.reshape(conv_out, [-1, 5 * 5 * 16])
if use_two_fc:
fc1 = fc_layer(flattened, 5 * 5 * 16, 200, "fc1")
relu = tf.nn.relu(fc1)
tf.summary.histogram("fc1/relu", relu)
logits = fc_layer(fc1, 200, 46, "fc2")
else:
logits = fc_layer(flattened, 5*5*16, 46, "fc")
最佳答案
当我过去遇到这个问题时,这是使用的结果
writer.add_summary(current_summary)
而不是
writer.add_summary(current_summary, epoch)
(使用通用变量名称,因为询问者代码的相关部分未发布。)例如,
summary_op = tf.summary.merge_all()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
writer = tf.summary.FileWriter("/Whatever/Path", sess.graph)
for iteration in range(1001):
if epoch % 100 == 0:
_, current_summary = sess.run([training_op, summary_op])
writer.add_summary(current_summary, iteration)
else:
_ = sess.run(training_op)
关于tensorflow - 使用 Tensorflow 的 CNN 模型,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48018215/
我想将模型及其各自训练的权重从 tensorflow.js 转换为标准 tensorflow,但无法弄清楚如何做到这一点,tensorflow.js 的文档对此没有任何说明 我有一个 manifest
我有一个运行良好的 TF 模型,它是用 Python 和 TFlearn 构建的。有没有办法在另一个系统上运行这个模型而不安装 Tensorflow?它已经经过预训练,所以我只需要通过它运行数据。 我
当执行 tensorflow_model_server 二进制文件时,它需要一个模型名称命令行参数,model_name。 如何在训练期间指定模型名称,以便在运行 tensorflow_model_s
我一直在 R 中使用标准包进行生存分析。我知道如何在 TensorFlow 中处理分类问题,例如逻辑回归,但我很难将其映射到生存分析问题。在某种程度上,您有两个输出向量而不是一个输出向量(time_t
Torch7 has a library for generating Gaussian Kernels在一个固定的支持。 Tensorflow 中有什么可比的吗?我看到 these distribu
在Keras中我们可以简单的添加回调,如下所示: self.model.fit(X_train,y_train,callbacks=[Custom_callback]) 回调在doc中定义,但我找不到
我正在寻找一种在 tensorflow 中有条件打印节点的方法,使用下面的示例代码行,其中每 10 个循环计数,它应该在控制台中打印一些东西。但这对我不起作用。谁能建议? 谢谢,哈米德雷萨, epsi
我想使用 tensorflow object detection API 创建我自己的 .tfrecord 文件,并将它们用于训练。该记录将是原始数据集的子集,因此模型将仅检测特定类别。我不明白也无法
我在 TensorFlow 中训练了一个聊天机器人,想保存模型以便使用 TensorFlow.js 将其部署到 Web。我有以下内容 checkpoint = "./chatbot_weights.c
我最近开始学习 Tensorflow,特别是我想使用卷积神经网络进行图像分类。我一直在看官方仓库中的android demo,特别是这个例子:https://github.com/tensorflow
我目前正在研究单图像超分辨率,并且我设法卡住了现有的检查点文件并将其转换为 tensorflow lite。但是,使用 .tflite 文件执行推理时,对一张图像进行上采样所需的时间至少是使用 .ck
我注意到 tensorflow 的 api 中已经有批量标准化函数。我不明白的一件事是如何更改训练和测试之间的程序? 批量归一化在测试和训练期间的作用不同。具体来说,在训练期间使用固定的均值和方差。
我创建了一个模型,该模型将 Mobilenet V2 应用于 Google colab 中的卷积基础层。然后我使用这个命令转换它: path_to_h5 = working_dir + '/Tenso
代码取自:- http://adventuresinmachinelearning.com/python-tensorflow-tutorial/ import tensorflow as tf fr
好了,所以我准备在Tensorflow中运行 tf.nn.softmax_cross_entropy_with_logits() 函数。 据我了解,“logit”应该是概率的张量,每个对应于某个像素的
tensorflow 服务构建依赖于大型 tensorflow ;但我已经成功构建了 tensorflow。所以我想用它。我做这些事情:我更改了 tensorflow 服务 WORKSPACE(org
Tensoflow 嵌入层 ( https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding ) 易于使用, 并且有大量的文
我正在尝试使用非常大的数据集(比我的内存大得多)训练 Tensorflow 模型。 为了充分利用所有可用的训练数据,我正在考虑将它们分成几个小的“分片”,并一次在一个分片上进行训练。 经过一番研究,我
根据 Sutton 的书 - Reinforcement Learning: An Introduction,网络权重的更新方程为: 其中 et 是资格轨迹。 这类似于带有额外 et 的梯度下降更新。
如何根据条件选择执行图表的一部分? 我的网络有一部分只有在 feed_dict 中提供占位符值时才会执行.如果未提供该值,则采用备用路径。我该如何使用 tensorflow 来实现它? 以下是我的代码
我是一名优秀的程序员,十分优秀!